Matching Items (1,748)
Filtering by

Clear all filters

133373-Thumbnail Image.png
Description
Many developing countries do not have health care systems that can afford technological biomedical devices or supplies to make such devices operational. To fill this void, nonprofit organizations, like Project C.U.R.E., recondition retired biomedical instrumentation so they can send medical supplies to help these developing countries. One of the issues

Many developing countries do not have health care systems that can afford technological biomedical devices or supplies to make such devices operational. To fill this void, nonprofit organizations, like Project C.U.R.E., recondition retired biomedical instrumentation so they can send medical supplies to help these developing countries. One of the issues with this is that sometimes the devices are unusable because components or expendable supplies are not available (Bhadelia). This issue has also been shown in the Impact Evaluations that Project C.U.R.E. receives from the clinics that explain the reasons why certain devices are no longer in use. That need underlies the idea on which this honors thesis has come into being. The purpose of this honors project was to create packing lists for biomedical instruments that Project C.U.R.E. recycles. This packing list would decrease the likelihood of important items being forgotten when sending devices. If an extra fuse, battery, light bulb, cuff or transducer is the difference between a functional or a nonfunctional medical device, such a list would be of benefit to Project C.U.R.E and these developing countries. In order to make this packing list, manuals for each device were used to determine what supplies were required, what was necessary for cleaning, and what supplies were desirable but functionally optional. This list was then added into a database that could be easily navigated and could help when packing up boxes for a shipment. The database also makes adding and editing the packing list simple and easy so that as Project C.U.R.E. gets more donated devices the packing list can grow.
ContributorsGraft, Kelsey Anne (Author) / Coursen, Jerry (Thesis director) / Walters, Danielle (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131528-Thumbnail Image.png
Description
The Hippo signaling pathway is responsible for regulating organ size through cell proliferation, stemness, and apoptosis. Through targeting proteins Yes-associated kinase 1(YAP) and transcriptional co-activator with a PDZ-binding domain(TAZ), YAP/TAZ are unable to enter the nucleus and bind with coactivators to express target genes. To understand YAP/TAZ dynamics and its

The Hippo signaling pathway is responsible for regulating organ size through cell proliferation, stemness, and apoptosis. Through targeting proteins Yes-associated kinase 1(YAP) and transcriptional co-activator with a PDZ-binding domain(TAZ), YAP/TAZ are unable to enter the nucleus and bind with coactivators to express target genes. To understand YAP/TAZ dynamics and its role in tumorigenesis, tissue regeneration, and tissue degeneration, a regulatory network was modeled by ordinary differential equations. Using MATLAB, the deterministic behavior of the network was observed to determine YAP/TAZ activity in different states. Performing the bifurcation analysis of the system through Oscill8, three states were identified: tumorigenic/regenerative, degenerative, and homeostatic states. Further analysis through parameter modification allowed a better understanding of which proteins can be targeted for cancer and degenerative disease.
ContributorsBarra Avila, Diego Rodrigo (Author) / Tian, Xiaojun (Thesis director) / Wang, Xiao (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133882-Thumbnail Image.png
Description
Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.
ContributorsNguyen, Amanda (Author) / Ganesh, Tirupalavanam (Thesis director) / Robinson, Carrie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05