Matching Items (6)
151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
149801-Thumbnail Image.png
Description
This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also

This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also developed deep understanding of the mathematics they learned. Moreover, Rico redesigned his curricula and instruction completely so that they provided a means of support for his students to learn mathematics the way he intended. The purpose of this study was to understand the sources of Rico's effectiveness. The data for this study was generated in three phases. Phase I included videos of Rico's lessons during one semester of an Algebra II course, post-lesson reflections, and Rico's self-constructed instructional materials. An analysis of Phase I data led to Phase II, which consisted of eight extensive stimulated-reflection interviews with Rico. Phase III consisted of a conceptual analysis of the prior phases with the aim of creating models of Rico's mathematical conceptions, his conceptions of his students' mathematical understandings, and his images of instruction and instructional design. Findings revealed that Rico had developed profound personal understandings, grounded in quantitative reasoning, of the mathematics that he taught, and profound pedagogical understandings that supported these very same ways of thinking in his students. Rico's redesign was driven by three factors: (1) the particular way in which Rico himself understood the mathematics he taught, (2) his reflective awareness of those ways of thinking, and (3) his ability to envision what students might learn from different instructional approaches. Rico always considered what someone might already need to understand in order to understand "this" in the way he was thinking of it, and how understanding "this" might help students understand related ideas or methods. Rico's continual reflection on the mathematics he knew so as to make it more coherent, and his continual orientation to imagining how these meanings might work for students' learning, made Rico's mathematics become a mathematics of students--impacting how he assessed his practice and engaging him in a continual process of developing MKT.
ContributorsLage Ramírez, Ana Elisa (Author) / Thompson, Patrick W. (Thesis advisor) / Carlson, Marilyn P. (Committee member) / Castillo-Chavez, Carlos (Committee member) / Saldanha, Luis (Committee member) / Middleton, James A. (Committee member) / Arizona State University (Publisher)
Created2011
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
153836-Thumbnail Image.png
Description
Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher

Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher knowledge in mathematics education. To address this need, this dissertation study examined the role of a secondary mathematics teacher’s image of instructional constraints on his enacted subject matter knowledge. I collected data in three phases. First, I conducted a series of task-based clinical interviews that allowed me to construct a model of David’s mathematical knowledge of sine and cosine functions. Second, I conducted pre-lesson interviews, collected journal entries, and examined David’s instruction to characterize the mathematical knowledge he utilized in the context of designing and implementing lessons. Third, I conducted a series of semi-structured clinical interviews to identify the circumstances David appraised as constraints on his practice and to ascertain the role of these constraints on the quality of David’s enacted subject matter knowledge. My analysis revealed that although David possessed many productive ways of understanding that allowed him to engage students in meaningful learning experiences, I observed discrepancies between and within David’s mathematical knowledge and his enacted mathematical knowledge. These discrepancies were not occasioned by David’s active compensation for the circumstances and events he appraised as instructional constraints, but instead resulted from David possessing multiple schemes for particular ideas related to trigonometric functions, as well as from his unawareness of the mental actions and operations that comprised these often powerful but uncoordinated cognitive schemes. This lack of conscious awareness made David ill-equipped to define his instructional goals in terms of the mental activity in which he intended his students to engage, which further conditioned the circumstances and events he appraised as constraints on his practice. David’s image of instructional constraints therefore did not affect his enacted subject matter knowledge. Rather, characteristics of David’s subject matter knowledge, namely his uncoordinated cognitive schemes and his unawareness of the mental actions and operations that comprise them, affected his image of instructional constraints.
ContributorsTallman, Michael Anthony (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Saldanha, Luis (Committee member) / Middleton, James (Committee member) / Harel, Guershon (Committee member) / Arizona State University (Publisher)
Created2015
155002-Thumbnail Image.png
Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study.

This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.

The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.

The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.

The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.

Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
ContributorsByerley, Cameron (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Committee member) / Middleton, James A. (Committee member) / Saldanha, Luis (Committee member) / Mcnamara, Allen (Committee member) / Arizona State University (Publisher)
Created2016
189214-Thumbnail Image.png
Description
This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the

This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the students’ meaning of the idea of rate of change and its role in their understanding ideas of derivative, partial derivative, and directional derivative. A second purpose was to understand and advance the ways in which each student used the idea of rate of change to make linear approximations. My analysis of the data revealed (i) how a student’s understanding of constant rate of change impacted their conception of derivatives, partial derivatives, and directional derivatives, and (ii) how each student used these ideas to make linear approximations. My results revealed that conceptualizing a rate of change as the ratio of two quantities’ values as they vary together was critical for their conceptualizing partial and directional derivatives quantitatively as directional rates of change, and in particular, how they visualized these ideas graphically and constructed symbols to represent the quantities and the relationships between their values. Further, my results revealed the importance of distinguishing between conceptualizing an instantaneous rate of change assuming a constant rate of change over any amount of change in the independent quantity(s) and using this rate of change to generate an approximate amount of change in the value of the dependent quantity. Alonzo initially conceptualized rate of change and derivative as the slantiness of a line that intersected a function’s curve. John also referred to the derivative at a point as the slope of the line tangent to the curve at that point, but he appeared to conceptualize the derivative as a ratio of the changes in two quantities values and imagined (represented graphically) two changes while discussing how to make this ratio more precise and use its value to make linear projections of future function values and amounts of accumulation. John also conceptualized the derivative as the best local, linear approximation for a function.
ContributorsBettersworth, Zachary S (Author) / Carlson, Marilyn (Thesis advisor) / Harel, Guershon (Committee member) / Roh, Kyeong Hah (Committee member) / Thompson, Patrick W. (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2023