Matching Items (935)
153170-Thumbnail Image.png
Description
Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the subcellular environment non-linearly slowing the diffusion of molecules. Compared to normal diffusion, signaling molecules in these constrained spaces can be more concentrated at the source, and more diffuse at longer distances, potentially effecting the signalling dynamics. As diffusion at the cellular scale is a fundamental mechanism of cellular signaling and additionally is an implicit underlying mathematical assumption of many canonical models, a closer look at models of anomalous diffusion is warranted. Approaches in the literature include derivations of fractional differential diffusion equations (FDE) and continuous time random walks (CTRW). However these approaches are typically based on \emph{ad-hoc} assumptions on time- and space- jump distributions. We apply recent developments in asymptotic techniques on collisional kinetic equations to develop a FDE model of sub-diffusion due to trapping regions and investigate the nature of the space/time probability distributions assosiated with trapping regions. This approach both contrasts and compliments the stochastic CTRW approach by positing more physically realistic underlying assumptions on the motion of particles and their interactions with trapping regions, and additionally allowing varying assumptions to be applied individually to the traps and particle kinetics.
ContributorsHoleva, Thomas Matthew (Author) / Ringhofer, Christian (Thesis advisor) / Baer, Steve (Thesis advisor) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Taylor, Jesse (Committee member) / Arizona State University (Publisher)
Created2014
153290-Thumbnail Image.png
Description
Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection.

Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection. A deterministic mathematical model of HIV transmission is developed to evaluate the public-health impact of oral PrEP interventions, and to compare PrEP effectiveness with respect to different evaluation methods. The effects of demographic, behavioral, and epidemic parameters on the PrEP impact are studied in a multivariate sensitivity analysis. Most of the published models on HIV intervention impact assume that the number of individuals joining the sexually active population per year is constant or proportional to the total population. In the second part of this study, three models are presented and analyzed to study the PrEP intervention, with constant, linear, and logistic recruitment rates. How different demographic assumptions can affect the evaluation of PrEP is studied. When provided with data, often least square fitting or similar approaches can be used to determine a single set of approximated parameter values that make the model fit the data best. However, least square fitting only provides point estimates and does not provide information on how strongly the data supports these particular estimates. Therefore, in the third part of this study, Bayesian parameter estimation is applied on fitting ODE model to the related HIV data. Starting with a set of prior distributions for the parameters as initial guess, Bayes' formula can be applied to obtain a set of posterior distributions for the parameters which makes the model fit the observed data best. Evaluating the posterior distribution often requires the integration of high-dimensional functions, which is usually difficult to calculate numerically. Therefore, the Markov chain Monte Carlo (MCMC) method is used to approximate the posterior distribution.
ContributorsZhao, Yuqin (Author) / Kuang, Yang (Thesis advisor) / Taylor, Jesse (Committee member) / Armbruster, Dieter (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
156871-Thumbnail Image.png
Description
Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of

Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of arid-adapted flightless beetles found throughout western North America. Four interconnected studies that jointly increase our knowledge of this group are presented. First, the darkling beetle fauna of the Algodones sand dunes in southern California is examined as a case study to explore the scientific practice of checklist creation. An updated list of the species known from this region is presented, with a critical focus on material now made available through digitization and global aggregation. This part concludes with recommendations for future biodiversity checklist authors. Second, the psammophilic genus Trogloderus LeConte, 1879 is revised. Six new species are described, and the first, multi-gene phylogeny for the genus is inferred. In addition, historical biogeographic reconstructions along with novel hypotheses of speciation patterns within the Intermountain Region are given. In particular, the Kaibab Plateau and Kaiparowitz Formation are found to have promoted speciation on the Colorado Plateau. The Owens Valley and prehistoric Bouse Embayment are similarly hypothesized to drive species diversification in southern California. Third, a novel phylogenomic analysis for the tribe Amphidorini is presented, based on 29 de novo partial transcriptomes. Three putative ortholog sets were discovered and analyzed to infer the relationships between species groups and genera. The existing classification of the tribe is found to be highly inadequate, though the earliest-diverging relationships within the tribe are still in question. Finally, the new phylogenetic framework is used to provide a genus-level revision for the Amphidorini, which previously contained six valid genera and 253 valid species. This updated classification includes more than 100 taxonomic changes and results in the revised tribe consisting of 16 genera, with three being described as new to science.
ContributorsJohnston, Murray Andrew (Author) / Franz, Nico M (Thesis advisor) / Cartwright, Reed (Committee member) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2018
136036-Thumbnail Image.png
Description
Biogeography is the study of the spatial distribution of the earth's biota, both in the present and the past. Traditionally, biogeographical studies have relied on a combination of surveys of existing populations, fossil evidence, and the geological record of the earth. However, with the advent of relatively inexpensive methods of

Biogeography is the study of the spatial distribution of the earth's biota, both in the present and the past. Traditionally, biogeographical studies have relied on a combination of surveys of existing populations, fossil evidence, and the geological record of the earth. However, with the advent of relatively inexpensive methods of DNA sequencing, it is now possible to use information concerning the genetic relatedness of individuals in populations to address questions about how those populations came to be where they are today. For example, biogeographical studies of HIV-I provide strong support for the hypothesis that this virus arose in Africa through a host switch from chimpanzees to humans and only began to spread to human populations located on other continents some 60 to 70 years ago (Sharp & Hahn, 2010).
ContributorsZheng, Wenyu (Author) / Taylor, Jesse (Thesis director) / Escalante, Ananias (Committee member) / Thieme, Horst (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
137250-Thumbnail Image.png
Description
Winning records are critical to a team's morale, success, and future. As such, players need to perform their best when they are called into a game to ensure the best possible chance of contributing to the team's success. During the 2013 fall season of Arizona State's NCAA soccer team, twenty-five

Winning records are critical to a team's morale, success, and future. As such, players need to perform their best when they are called into a game to ensure the best possible chance of contributing to the team's success. During the 2013 fall season of Arizona State's NCAA soccer team, twenty-five females had quantities measured, such as heart rate workload, weight loss and playing time, that were analyzed using a least squares regression line and other mathematical relationships with mathematical software. Equations and box plots were produced for each player in the hopes that the coaches could tailor practices to the athletes' bodies needs to increase performance and results for the upcoming fall 2014 season. The playing time and heart rate workload model suggests that increased playing time increases heart rate workload in a linear fashion, though the increase varies by player. The model for the team proposes that the heart rate workload changes in response to playing time according to the equation y=2.67x+127.41 throughout the season. The weight loss and heart rate workload model suggest that establishing a relationship between the two variables is complex since the linear and power regression models did not fit the data. Future studies can focus on the Rate of Perceived Exertion scale, which can supplement the heart rate workload and provide valuable information on players' fatigue levels.
ContributorsRoth, Jasmine Lorraine (Author) / Heckman, Christopher (Thesis director) / Beaumont, Joshua (Committee member) / Taylor, Jesse (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
154511-Thumbnail Image.png
Description
Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result, individuals that are geographically near each other will tend to have greater genetic similarity than individuals that are further apart. It is important to

Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result, individuals that are geographically near each other will tend to have greater genetic similarity than individuals that are further apart. It is important to identify isolation-by-distance because it can impact the statistical analysis of population samples and it can help us better understand evolutionary dynamics. For this dissertation I investigated several aspects of isolation-by-distance. First, I looked at how the shape of the dispersal distribution affects the observed pattern of isolation-by-distance. If, as theory predicts, the shape of the distribution has little effect, then it would be more practical to model isolation-by-distance using a simple dispersal distribution rather than replicating the complexities of more realistic distributions. Therefore, I developed an efficient algorithm to simulate dispersal based on a simple triangular distribution, and using a simulation, I confirmed that the pattern of isolation-by-distance was similar to other more realistic distributions. Second, I developed a Bayesian method to quantify isolation-by-distance using genetic data by estimating Wright’s neighborhood size parameter. I analyzed the performance of this method using simulated data and a microsatellite data set from two populations of Maritime pine, and I found that the neighborhood size estimates had good coverage and low error. Finally, one of the major consequences of isolation-by-distance is an increase in inbreeding. Plants are often particularly susceptible to inbreeding, and as a result, they have evolved many inbreeding avoidance mechanisms. Using a simulation, I determined which mechanisms are more successful at preventing inbreeding associated with isolation-by-distance.
ContributorsFurstenau, Tara N (Author) / Cartwright, Reed A (Thesis advisor) / Rosenberg, Michael S. (Committee member) / Taylor, Jesse (Committee member) / Wilson-Sayres, Melissa (Committee member) / Arizona State University (Publisher)
Created2015
154808-Thumbnail Image.png
Description
The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous

The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous species- and clade-specific multigene families have major functions in the development and maintenance of infection. Nonetheless, while the evolutionary mechanisms predominant on many species- and clade-specific multigene families have been previously studied, there are far less studies dedicated to analyzing genus common multigene families (GCMFs). I studied the patterns of natural selection and recombination in 90 GCMFs with diverse numbers of gene gain/loss events. I found that the majority of GCMFs are formed by duplications events that predate speciation of mammal Plasmodium species, with many paralogs being neutrally maintained thereafter. In general, multigene families involved in immune evasion and host cell invasion commonly showed signs of positive selection and species-specific gain/loss events; particularly, on Plasmodium species is the simian and rodent clades. A particular multigene family: the merozoite surface protein-7 (msp7) family, is found in all Plasmodium species and has functions related to the erythrocyte invasion. Within Plasmodium vivax, differences in the number of paralogs in this multigene family has been previously explained, at least in part, as potential adaptations to the human host. To investigate this I studied msp7 orthologs in closely related non-human primate parasites where homology was evident. I also estimated paralogs’ evolutionary history and genetic polymorphism. The emerging patterns where compared with those of Plasmodium falciparum. I found that the evolution of the msp7 multigene family is consistent with a Birth-and-Death model where duplications, pseudogenization and gene lost events are common. In order to study additional aspects in the evolution of Plasmodium, I evaluated the trends of long term and short term evolution and the putative effects of vertebrate- host’s immune pressure of gametocytes across various Plasmodium species. Gametocytes, represent the only sexual stage within the Plasmodium life cycle, and are also the transition stages from the vertebrate to the mosquito vector. I found that, while male and female gametocytes showed different levels of immunogenicity, signs of positive selection were not entirely related to the location and presence of immune epitope regions. Overall, these studies further highlight the complex evolutionary patterns observed in Plasmodium.
ContributorsCastillo Siri, Andreina I (Author) / Rosenberg, Michael (Thesis advisor) / Escalante, Ananias (Committee member) / Taylor, Jesse (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
155363-Thumbnail Image.png
Description
Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective

Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities.

To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.
ContributorsWilson, Sean Thomas (Author) / Berman, Spring M (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Sugar, Thomas (Committee member) / Rodriguez, Armando A (Committee member) / Taylor, Jesse (Committee member) / Arizona State University (Publisher)
Created2017