Matching Items (928)
134915-Thumbnail Image.png
Description
G protein-coupled receptors, or GPCRs, are receptors located within the membrane of cells that elicit a wide array of cellular responses through their interactions with G proteins. Recent advances in the use of lipid cubic phase (LCP) for the crystallization of GPCRs, as well as increased knowledge of techniques to

G protein-coupled receptors, or GPCRs, are receptors located within the membrane of cells that elicit a wide array of cellular responses through their interactions with G proteins. Recent advances in the use of lipid cubic phase (LCP) for the crystallization of GPCRs, as well as increased knowledge of techniques to improve receptor stability, have led to a large increase in the number of available GPCR structures, despite historic difficulties. This project is focused on the histamine family of receptors, which are Class A GPCRs that are involved in the body’s allergic and inflammatory responses. In particular, the goal of this project was to design, express, and purify histamine receptors with the ultimate goal of crystallization. Successive rounds of optimization included the use of recombinant DNA techniques in E.coli to truncate sections of the proteins and the insertion of several fusion partner proteins to improve receptor expression and stability. All constructs were expressed in a Bac-to-Bac baculovirus expression system using Sf9 insect cells, solubilized using n-Dodecyl-β-D-Maltoside (DDM), and purified using immobilized metal affinity chromatography. Constructs were then analyzed by SDS-Page, Western blot, and size-exclusion chromatography to determine their presence, purity, and homogeneity. Along with their expression data from insect cells, the most stable and homogeneous construct from each round was used to design successive optimizations. After 3 rounds of construct design for each receptor, much work remains to produce a stable sample that has the potential to crystallize. Future work includes further optimization of the insertion site of the fusion proteins, ligand screening for co-crystallization, optimization of purification conditions, and screening of potential thermostabilizing point mutations. Success in solving a structure will allow for a more detailed understanding of the receptor function in addition to its vital use in rational drug discovery.
ContributorsCosgrove, Steven Andrew (Author) / Liu, Wei (Thesis director) / Mills, Jeremy (Committee member) / Mazor, Yuval (Committee member) / W. P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148004-Thumbnail Image.png
Description

In oxygenic photosynthesis, conversion of solar energy to chemical energy is catalyzed by the<br/>pigment-protein complexes Photosystem II (PSII) and Photosystem I (PSI) embedded within the<br/>thylakoid membrane of photoautotrophs. The function of these pigment-protein complexes are<br/>conserved between all photoautotrophs, however, the oligomeric structure, as well as the<br/>spectroscopic properties of the PSI

In oxygenic photosynthesis, conversion of solar energy to chemical energy is catalyzed by the<br/>pigment-protein complexes Photosystem II (PSII) and Photosystem I (PSI) embedded within the<br/>thylakoid membrane of photoautotrophs. The function of these pigment-protein complexes are<br/>conserved between all photoautotrophs, however, the oligomeric structure, as well as the<br/>spectroscopic properties of the PSI complex, differ. In early evolving photoautotrophs, PSI<br/>exists in a trimeric organization, but in later evolving species this was lost and PSI exists solely<br/>as a monomer. While the reasons for a change in oligomerization are not fully understood, one<br/>of the 11 subunits within cyanobacterial PSI, PsaL, is thought to be involved in trimerization<br/>through the coordination of a calcium ion in an adjacent monomer. Recently published<br/>structures have demonstrated that PSI complexes are capable of trimerization without<br/>coordinating the calcium ion within PsaL.<br/>5 Here we explore the role the calcium ion plays in both<br/>the oligomeric and spectroscopic properties in PSI isolated from Synechocystis sp. PCC 6803.

ContributorsVanlandingham, Jackson R (Author) / Mazor, Yuval (Thesis director) / Mills, Jeremy (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05