Matching Items (1)
149405-Thumbnail Image.png
Description
The U.S. Navy is interested in evaluating the dielectric performance of SF6 at 30 kHz in order to develop optimal bushing designs and to ensure reliable operation for the Very Low Frequency/ Low Frequency (VLF/LF) transmitting stations. The breakdown experiments of compressed SF6 at 30 kHz in the pressure range

The U.S. Navy is interested in evaluating the dielectric performance of SF6 at 30 kHz in order to develop optimal bushing designs and to ensure reliable operation for the Very Low Frequency/ Low Frequency (VLF/LF) transmitting stations. The breakdown experiments of compressed SF6 at 30 kHz in the pressure range of 1-5 atm were conducted in both the uniform field (plane-plane gap) and the non-uniform field (rod-plane gap). To understand the impact of pressure on the breakdown voltage of SF6 at VLF/LF, empirical models of the dielectric strength of SF6 were derived based on the experimental data and regression analysis. The pressure correction factors that present the correlation between the breakdown voltage of SF6 at VLF/LF and that of air at 50/60 Hz were calculated. These empirical models provide an effective way to use the extensively documented breakdown voltage data of air at 60 Hz to evaluate the dielectric performance of SF6 for the design of VLF/LF high voltage equipment. In addition, several breakdown experiments and similar regression analysis of air at 30 kHz were conducted as well. A ratio of the breakdown voltage of SF6 to that of air at VLF/LF was calculated, from which a significant difference between the uniform gap and the non-uniform gap was observed. All the models and values provide useful information to evaluate and predict the performance of the bushings in practice.
ContributorsHan, Jian (Author) / Gorur, Ravi S (Thesis advisor) / Farmer, Richard G (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2010