Matching Items (1)
137297-Thumbnail Image.png
Description
Solar cells are an increasingly important energy source for meeting growing energy demands. Organic photovoltaics in particular have potential in this area due to their low cost and the relative abundance of their constituents. One concern with the inverted configuration (a type of OPV with increased long-term stability) is their

Solar cells are an increasingly important energy source for meeting growing energy demands. Organic photovoltaics in particular have potential in this area due to their low cost and the relative abundance of their constituents. One concern with the inverted configuration (a type of OPV with increased long-term stability) is their reliance on activation by ultraviolet (UV) light. Here we examine the incorporation of a new electron transport layer (ETL) material, zinc tin oxide (ZTO), in order to assess its interaction with UV light. Current-voltage characteristics were analyzed using a 420 nm cutoff filter to control UV light exposure. ZTO proved to be an adequate alternative to ZnO when comparing photovoltaic response. However, no improvement was found in terms of UV light activation. In addition, recent works show that oxygen plasma treatment of metal oxides used for hole transport layers modifies the work function and yields higher efficiency devices. Spin cast benzyl phosphonic acid self-assembled monolayers (BPA SAMs) provide similar results without the need for plasma treatment. Here we examine the use of BPA SAMs in standard devices utilizing PV2000, a proprietary active layer blend made by Plextronics. The use of BPA SAMs on a nickel oxide hole transport layer deepened the work function significantly, yielding greater device performance.
ContributorsJackson, Skyler (Author) / Phelan, Patrick (Thesis director) / Gust, Devans (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05