Matching Items (27)
151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
ContributorsKnierman, Karen A (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Thesis advisor) / Mauskopf, Philip (Committee member) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2013
153247-Thumbnail Image.png
Description
The design, fabrication and testing of a novel full waveguide band ortho-mode transducer (OMT) for operation from 750-1150 GHz is presented in this dissertation. OMT is a device that separates orthogonal polarizations within the same frequency band. At millimeter and sub millimeter wavelengths, OMTs can achieve precise characterization of the

The design, fabrication and testing of a novel full waveguide band ortho-mode transducer (OMT) for operation from 750-1150 GHz is presented in this dissertation. OMT is a device that separates orthogonal polarizations within the same frequency band. At millimeter and sub millimeter wavelengths, OMTs can achieve precise characterization of the amplitude, spectrum and polarization of electromagnetic radiation by increasing spectral coverage and sensitivity while reducing aperture size, optical spill and instrumental polarization offsets. A fully planar design is implemented with the use of Robinson OMT model along with a planar finline circuit. CST Microwave Studio is used to design and simulate OMT. Existing finline circuits which were fabricated using photolithographic techniques on a thin dielectric substrate were employed. The finline chips are fabricated on a thin (1 µm) SOI substrate with thick (5 µm) gold finline metallization and gold beam leads for chip grounding. The OMT is designed with H plane splits in the through arm and E plane splits in the side arm to comply with the existing machining tools and technique. Computer Numerical Controlled (CNC) machining is used to fabricate the OMT split block. The OMT is tested at Jet Propulsion Laboratory (JPL) using Agilent PNA-X VNA and VDI WR1.0 extension heads. In the future, this OMT design could be a part of a fully integrated dual polarization mixer block, with the input horn, OMT and both mixers fabricated in a single flangeless split block. In Radio Astronomy, integrated dual polarization mixers of this type will increase the signal processing speed by 40%. This type of OMT can also be used for terahertz RADAR and communication purposes.
ContributorsSirsi, Siddhartha (Author) / Groppi, Christopher (Thesis advisor) / Aberle, James T., 1961- (Thesis advisor) / Mauskopf, Philip (Committee member) / Arizona State University (Publisher)
Created2014
153934-Thumbnail Image.png
Description
The IceCube Neutrino Observatory has provided the first map of the high energy (~0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a

The IceCube Neutrino Observatory has provided the first map of the high energy (~0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a galactic component, of the neutrino flux. We present a statistical analysis of positional coincidences of the IceCube neutrinos with known astrophysical objects from several catalogs. For the brightest gamma-ray emitting blazars and for Seyfert galaxies, the numbers of coincidences is consistent with the random, or “null”, distribution. Instead, when considering starburst galaxies with the highest flux in gamma-rays and infrared radiation, up to n = 8 coincidences are found, representing an excess over the ~4 predicted for the null distribution. The probability that this excess is realized in the null case, the p-value, is p = 0.042. This value falls to p = 0.003 for a set of gamma-ray detected starburst galaxies and superbubbles in the galactic neighborhood. Therefore, it is possible that these might account for a subset of IceCube neutrinos. The physical plausibility of such correlation is discussed briefly.
ContributorsEmig, Kimberly L (Author) / Windhorst, Roiger (Thesis advisor) / Lunardini, Cecilia (Thesis advisor) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2015
157387-Thumbnail Image.png
Description
The development of new Ultra-Violet/Visible/IR range (UV/Vis/IR) astronomical instrumentation that use novel approaches for imaging and increase the accessibility of observing time for more research groups is essential for rapid innovation within the community. Unique focal planes that are rapid-prototyped, low cost, and provide high resolution are key.

In this

The development of new Ultra-Violet/Visible/IR range (UV/Vis/IR) astronomical instrumentation that use novel approaches for imaging and increase the accessibility of observing time for more research groups is essential for rapid innovation within the community. Unique focal planes that are rapid-prototyped, low cost, and provide high resolution are key.

In this dissertation the emergent designs of three unique focal planes are discussed. These focal planes were each designed for a different astronomical platform: suborbital balloon, suborbital rocket, and ground-based observatory. The balloon-based payload is a hexapod-actuated focal plane that uses tip-tilt motion to increase angular resolution through the removal of jitter – known as the HExapod Resolution-Enhancement SYstem (HERESY), the suborbital rocket imaging payload is a Jet Propulsion Laboratory (JPL) delta-doped charge-coupled device (CCD) packaged to survive the rigors of launch and image far-ultra-violet (FUV) spectra, and the ground-based observatory payload is a star centroid tracking modification to the balloon version of HERESY for the tip-tilt correction of atmospheric turbulence.

The design, construction, verification, and validation of each focal plane payload is discussed in detail. For HERESY’s balloon implementation, pointing error data from the Stratospheric Terahertz Observatory (STO) Antarctic balloon mission was used to form an experimental lab test setup to demonstrate the hexapod can eliminate jitter in flight-like conditions. For the suborbital rocket focal plane, a harsh set of unit-level tests to ensure the payload could survive launch and space conditions, as well as the characterization and optimization of the JPL detector, are detailed. Finally, a modification of co-mounting a fast-read detector to the HERESY focal plane, for use on ground-based observatories, intended to reduce atmospherically induced tip-tilt error through the centroid tracking of bright natural guidestars, is described.
ContributorsMiller, Alexander Duke (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Committee member) / Mauskopf, Philip (Committee member) / Jacobs, Daniel (Committee member) / Butler, Nathaniel (Committee member) / Arizona State University (Publisher)
Created2019
156453-Thumbnail Image.png
Description
The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and

The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments.

I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all SuperSpec devices and demonstrate basic functionality of the first WSpec prototype. As part of an effort to develop the first W-Band (75-110 GHz) TKIP, I construct a cryogenic waveguide feedthrough, which enhances the Astronomical Instrumentation Laboratory’s capability to test W-Band devices in general. These efforts contribute to the continued maturation of these kinetic inductance technologies, which will usher in a new era of millimeter-wave astronomy.
ContributorsChe, George (Author) / Mauskopf, Philip D (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Groppi, Christopher (Committee member) / Semken, Steven (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2018
156967-Thumbnail Image.png
Description
This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative

This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative to the currently used amplitude interferometry.

Description of a modular intensity interferometer system using commercially available single-photon detectors is given. Calculations on the sensitivity and \emph{uv}-plane coverage using these modules mounted on existing telescopes on Kitt Peak, Arizona is presented.

Determining fundamental stellar properties is essential for testing models of stellar evolution as well as for deriving physical properties of transiting exoplanets. The proposed method shows great promise in measuring the angular size of stars. Simulations indicate that it is possible to measure stellar diameters of bright stars with AB magnitude <6 with a precision of >5% in a single night of observation.

Additionally, a description is given of a custom time-to-digital converter designed to time tag individual photons from multiple single-photon detectors with high count rate, continuous data logging, and low systematics. The instrument utilizes a tapped-delay line approach on an FPGA chip which allows for sub-clock resolution of <100 ps. The TDC is implemented on a Re-configurable Open Architecture Computing Hardware Revision 2 (ROACH2) board which allows for continuous data streaming and time tagging of up to 20 million events per second. The functioning prototype is currently set-up to work with up to ten independent channels. Laboratory characterization of the system, including RF, pick up and mitigation, as well as measurement of in-lab photon correlations from an incoherent light source (artificial star), are presented. Additional improvements to the TDC will also be discussed, such as improving the data transfer rate by a factor of 10 via an SDP+ Mezzanine card and PCIe 2SFP+ 10 Gb card, as well as scaling to 64 independent channels.

Furthermore, a modified nulling interferometer with image inversion is proposed, for direct imaging of exoplanets below the canonical Rayleigh resolution limit. Image inversion interferometry relies on splitting incoming radiation from a source, either spatially rotating or reflecting the electric field from one arm of the interferometer before recombining the signals and detecting the resulting images in the two output ports with an array of high-speed single-photon detectors. Sources of incoming radiation that have cylindrical symmetry and are centered on the rotation axis will cancel in one of the output ports and add in the other output port. The ability to suppress light from a host star, as well as the ability to resolve past the Rayleigh limit, enables sensitive detection of exoplanets from a stable environment without the need for a coronagraph. The expected number of photons and the corresponding variance in the measurement for different initial contrast ratios are shown, with some first-order theoretical instrumental errors.

Lastly, preliminary results from a sizeable photometric survey are presented. This survey is used to derive bolometric flux alongside from angular size measurements and the effective stellar temperatures.
ContributorsPilyavsky, Genady (Author) / Mauskopf, Philip (Thesis advisor) / Groppi, Christopher (Committee member) / Butler, Nathaniel (Committee member) / Bowman, Judd (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2018
156980-Thumbnail Image.png
Description
The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I

The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I show that variable $\alpha$(r,z) (where $r$ is radius, and $z$ is height from the midplane) attributable to angular momentum transport due to MRI can yield disks with significantly different structure, as mass piles up in the 1-10 AU region resulting in steep slopes of p $>$ 2 here (where p is the power law exponent in $\Sigma \propto r^{-p}$). I also show that the transition radius (where bulk mass flow switches from inward to outward) can move as close in as 3 AU; this effect (especially prominent in externally photoevaporated disks) may significantly influence the radial water content available during planet formation.

I then investigate the transport of water in disks with different variable α profiles. While radial temperature profile sets the location of the water snowline (i.e., inside of which water is present as vapor; outside of which, as ice on solids), it is the rates of diffusion and drift of small icy solids and diffusion of vapor across the snow line that determine the radial water distribution. All of these processes are highly sensitive to local $\alpha$. I calculate the effect of radially varying α on water transport, by tracking the abundance of vapor in the inner disk, and fraction of ice in particles and larger asteroids beyond the snow line. I find one α profile attributable to winds and hydrodynamical instabilities, and motivated by meteoritic constraints, to show considerable agreement with inferred water contents observed in solar system asteroids.

Finally, I calculate the timing of gap formation due to the formation of a planet in disks around different stars. Here, I assume that pebble accretion is the dominant mechanism for planetary growth and that the core of the first protoplanet forms at the water snow line. I discuss the dependence of gap timing to various stellar and disk properties.
ContributorsKalyaan, Anusha (Author) / Desch, Steven J (Thesis advisor) / Groppi, Christopher (Committee member) / Young, Patrick (Committee member) / Shkolnik, Evgenya (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2018
134320-Thumbnail Image.png
Description
The following paper discusses the validation of the TolTEC optical design along with a progress report regarding the design of the optical mounting system. Solidworks and Zemax were used in conjunction to model the proposed optics designs. The final optical design was selected through extensive CAD modeling and testing within

The following paper discusses the validation of the TolTEC optical design along with a progress report regarding the design of the optical mounting system. Solidworks and Zemax were used in conjunction to model the proposed optics designs. The final optical design was selected through extensive CAD modeling and testing within the Large Millimeter Telescope receiver room. The TolTEC optics can be divided into two arrays, one comprised of the warm mirrors and the second, cryogenically-operated cold mirrors. To ensure structural stability and optical performance, the mechanical design of these systems places a heavy emphasis on rigidity. This is done using a variety of design techniques that restrict motion along the necessary degrees of freedom and maximize moment of inertia while minimizing weight. Work will resume on this project in the Fall 2017 semester.
ContributorsKelso, Rhys Partain (Author) / Mauskopf, Philip (Thesis director) / Groppi, Christopher (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137153-Thumbnail Image.png
Description
An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components of the test setup include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the chopper alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Scripts written in Matlab and Python control the mechanical system, interface with receiver components, and process data. To calculate the equivalent noise temperature of a receiver, the y-factor method is used. Test system operation was verified by sweeping the local oscillator frequency and power level for two room temperature Schottky diode receivers from Virginia Diodes, Inc. The test system was then integrated with the KAPPa receiver, providing a low cost, simple, adaptable means to measure noise with minimal user intervention.
ContributorsKuenzi, Linda Christine (Author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Kulesa, Craig (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136912-Thumbnail Image.png
Description
Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid velocity maps in IDL. These clearly showed the main large outflow, and then we identified a few other possible outflows.
ContributorsBlumm, Margaret Elizabeth (Author) / Groppi, Christopher (Thesis director) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05