Matching Items (311)

136909-Thumbnail Image.png

Engineering Lean, Packaged Energy Systems for Rapid, Economical Deployment and Distributed Generation

Description

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro Combined Cycle (MMCC) with 3D renderings. Defining requirements and problem-solving approach methodology for generating complex design solutions required iterative design and a thorough understanding of industry practices and market trends. This paper briefly discusses design specifics; however, the major emphasis is on aspects pertaining to economical manufacture, deployment, and subsequent suitability to address the aforementioned challenges. The selection of these systems is based on the steady reduction of PV installation costs in recent years (average among utility, commercial, and residential down 27% from Q4 2012 to Q4 2013) and the dramatic decline in natural gas prices to $5.61 per thousand cubic feet. In addition, a large number of utility scale coal-based power plants will be retired in 2014, many due to progressive emission criteria, creating a demand for additional power systems to offset the capacity loss and to increase generating capacity in order to facilitate the ever-expanding world population. The proposed energy systems are not designed to provide power to the masses through a central location. Rather, they are intended to provide economical, reliable, and high quality power to remote locations and decentralized power to community-based grids. These energy systems are designed as a means of transforming and supporting the current infrastructure through distributed electricity generation.

Contributors

Agent

Created

Date Created
  • 2014-05

137142-Thumbnail Image.png

Design of Rocket Engine Nozzle Ejectors

Description

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.

Contributors

Agent

Created

Date Created
  • 2014-05

137146-Thumbnail Image.png

Modeling of Engineered Shock Absorbing Materials

Description

The main field of study research through this project is to study the effect of history of deformation in materials subjected to complex loading, useful for producing lightweight alloys and

The main field of study research through this project is to study the effect of history of deformation in materials subjected to complex loading, useful for producing lightweight alloys and composites optimized for absorbing shock and impact. This is accomplished by creating a digital model of a system in which the material undergoes tension and compression through colliding bars. The results show that the system generated is accurate when compared to real tests, so the program used to create the model can be used in the future for simulated tests using different materials or applied loads.

Contributors

Agent

Created

Date Created
  • 2014-05

137148-Thumbnail Image.png

PID Control Techniques for the Autonomous Quadrotor and a Frequency Approach to Analyzing and Identifying Dynamic Models

Description

This study aims to showcase the results of a quadrotor model and the mathematical techniques used to arrive at the proposed design. Multicopters have made an explosive appearance in recent

This study aims to showcase the results of a quadrotor model and the mathematical techniques used to arrive at the proposed design. Multicopters have made an explosive appearance in recent years by the controls engineering community because of their unique flight performance capabilities and potential for autonomy. The ultimate goal of this research is to design a robust control system that guides and tracks the quadrotor's trajectory, while responding to outside disturbances and obstacles that will realistically be encountered during flight. The first step is to accurately identify the physical system and attempt to replicate its behavior with a simulation that mimics the system's dynamics. This becomes quite a complex problem in itself because many realistic systems do not abide by simple, linear mathematical models, but rather nonlinear equations that are difficult to predict and are often numerically unstable. This paper explores the equations and assumptions used to create a model that attempts to match roll and pitch data collected from multiple test flights. This is done primarily in the frequency domain to match natural frequency locations, which can then be manipulated judiciously by altering certain parameters.

Contributors

Created

Date Created
  • 2014-05

137299-Thumbnail Image.png

Bio-Inspired Control for Robot Hand Catching and Grasping

Description

This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to

This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of the object, and use this relation to control a robot hand in real time. As an ultimate goal, it was hoped that this research will aide in furthering the bio-inspiration in robot control methods. To achieve the above goal, firstly a tactile sensing glove was developed. This instrument allowed for in depth study of human reactionary grasping movements when worn by subjects during experimentation. This sensing glove system recorded force data from the palm and motion data from four fingers. From these data sets, temporal trends were established relating to when subjects initiated grasping during each trial. Moreover, optical tracking was implemented to study the kinematics of the moving object during human experiments and also to close the loop during the control of the robot hand. Ultimately, a mathematical bio-inspired model was created. This was embodied in a two-term decreasing power function which related the temporal trend of wait time to the ball initial acceleration. The wait time is defined as the time between when the experimental conductor releases the ball and when the subject begins to initiate grasping by closing their fingers, over a distance of four feet. The initial acceleration is the first acceleration value of the object due to the force provided when the conductor throws the object. The distance over which the ball was thrown was incorporated into the model. This is discussed in depth within the thesis. Overall, the results presented here show promise for bio-inspired control schemes in the successful application of robotic devices. This control methodology will ideally be developed to move robotic prosthesis past discrete tasks and into more complicated activities.

Contributors

Agent

Created

Date Created
  • 2014-05

137068-Thumbnail Image.png

Unveiling the Neural Network Mechanism through Spike Detection

Description

This study was designed to create a more user-friendly experience in utilizing the M-Sorter package for spike sorting and detection. This was achieved through the creation of a Graphical User

This study was designed to create a more user-friendly experience in utilizing the M-Sorter package for spike sorting and detection. This was achieved through the creation of a Graphical User Interface or GUI. The GUI was created for the spike detection portion of sorting. Through the creation of the M-Sorter detection GUI, now novice programmers can run the detector process. Additionally, the parameters are easily altered which will greatly decrease the time it takes to enter data and eliminate mistakes users may make in data entry.

Contributors

Agent

Created

Date Created
  • 2014-05

137253-Thumbnail Image.png

Design of a RF Transmitting Belt as Part of a Wireless SCS System

Description

The belt component of a unique and novel wireless spinal cord stimulator (SCS) system was conceived, designed, made, and verified. This thesis details and documents all work from inception through

The belt component of a unique and novel wireless spinal cord stimulator (SCS) system was conceived, designed, made, and verified. This thesis details and documents all work from inception through preliminary verification and includes recommendations for future work. The purpose, scope, and objectives of the design and the thesis are introduced. Background literature is presented to provide context for the wireless SCS system as well as the belt component of the system. The product development process used to design the product is outlined. Requirements and constraints are determined from customer needs. Design options are considered and the best concept is selected. The design is made, optimized, and verified to meet the requirements. Future work for this design, outside the scope of this thesis, is discussed. Recommendations and conclusions following completion of the design are included as well.

Contributors

Agent

Created

Date Created
  • 2014-05

137262-Thumbnail Image.png

Analysis of Regulations on the Landing and Take-off of Commercial Aircraft

Description

The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine

The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to best-depict these scenarios where incidents of aircraft overrunning the runway, referred to as runway excursions. A case-study conducted of 44 federal investigations of runway excursions produced data indicating four influential factors within these incidents: weather, pilot error, instrument malfunction, and runway condition. Upon examination, all but pilot error appeared to have federal enforcement to diminish the occurrence of future incidents. This is a direct result of the broad possibilities that make up this factor. The study then searched for a consistent fault within the incidents with the results indicating an indirect relationship of thrust reversers, a technique utilized by pilots to provide additional braking, to these excursions. In cases of thrust reverser failure, pilots' over-reliance on the system lead to time being lost from the confusion produced by the malfunction, ultimately resulting in several different runway excursions. The legal implication with the situation is that current regulations are ambiguous on the subject of thrust reversers and thus do not properly model the usage of the technique. Thus, to observe the scope of danger this ambiguity presents to the industry, the relationship of the technique to commercial aerospace needed to be determined. Interviews were set-up with former commercial pilots to gather data related to the flight crew perspective. This data indicated that thrust reversers were actively utilized by pilots within the industry for landing operations. The problem with the current regulations was revealed that the lack of details on thrust reverser reflected a failure of regulations to model current industry flight operations. To improve safety within the industry, new data related to thrust reverser deployment must be developed and enforced to determine appropriate windows to utilize the technique, thus decreasing time lost in confusion that results from thrust reversers malfunction. Future work would be based on producing simulations to determine said data as well as proposing the policy suggestions produced by this thesis.

Contributors

Created

Date Created
  • 2014-05

137052-Thumbnail Image.png

Exporting the Classroom: A New Paradigm for Education

Description

The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen

The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi, PhD. The class package is designed to be published over an online platform so students and professors from various institutions can access the material. Currently the platform is in its final stages of development and is slated to go live on July of 2014. The future development of the package will be geared towards facilitating interdisciplinary collaboration between institutions based off of course concepts.

Contributors

Agent

Created

Date Created
  • 2014-05

136627-Thumbnail Image.png

Human Perception of Swarm Behavior

Description

This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns

This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an ultimate goal, it was hoped that this research will contribute to optimizing human-swarm interaction for the design of human supervisory controllers for swarms. To achieve the stated goals, two investigations were conducted. First, subjects gaze was tracked while observing a simulated swarm as it moved across the screen. This swarm changed in size, disturbance level in the position of the agents, speed, and path curvature. Second, subjects were asked to play a supervisory role as they watched a swarm move across the screen toward targets. The subjects determined whether a collision would occur and with which target while their responses as well as their gaze was tracked. In the case of an observatory role, a model of human gaze was created. This was embodied in a second order model similar to that of a spring-mass-damper system. This model was similar across subjects and stable. In the case of a supervisory role, inherent weaknesses in human perception were found, such as the inability to predict future position of curved paths. These findings are discussed in depth within the thesis. Overall, the results presented suggest that understanding human perception of swarms offers a new approach to the problem of swarm control. The ability to adapt controls to the strengths and weaknesses could lead to great strides in the reduction of operators in the control of one UAV, resulting in a move towards one man operation of a swarm.

Contributors

Created

Date Created
  • 2015-05