Matching Items (42)
155290-Thumbnail Image.png
Description
In sports, athletes reach new levels every day and are truly masters of their own bodies. Yet, when placed under pressure, the pin-point accuracy and elite level of performance can begin to wane.  Despite plentiful literature investigating the effects of pressure on performance, the underlying mechanisms behind decreased performance in

In sports, athletes reach new levels every day and are truly masters of their own bodies. Yet, when placed under pressure, the pin-point accuracy and elite level of performance can begin to wane.  Despite plentiful literature investigating the effects of pressure on performance, the underlying mechanisms behind decreased performance in sport are not yet clear.  The current research discusses possible theories for “choking under pressure”, the specific mechanisms through which pressure has its effects, and methods to prevent “choking.”  Fourteen current and former basketball players shot free throws with two primary predictor variables: the presence/absence of performance pressure and the restriction
on-restriction of movement during the pre-shot routine. Results were analyzed using 2x2 Within-Subjects Analysis of Variance. For shooting performance, there was an interaction (approaching significance) such that participants were more affected by pressure when allowed to execute their pre-shot routine. For kinematic variables, significant interactions between pressure and movement restriction were found for elbow-knee cross correlations and there were significant main effects of variability of the acceleration of both the elbow and knee angles. In all kinematic measures, participants exhibited more “novice-like” patterns of movement under pressure when movement was not restricted during the pre-shot routine. Primary results indicate promising evidence that motor control may be a mediating variable between pressure and performance and bring into question the value of a pre-shot routine in basketball.
ContributorsOrn, Anders (Author) / Gray, Robert (Thesis advisor) / Branaghan, Russell (Thesis advisor) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2017
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
168319-Thumbnail Image.png
Description
Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism

Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism was applied toward predictions for how humans would react after making errors in a more ecologically valid multitasking paradigm. Previous work on neural and behavioral indices of error-monitoring strongly supports the idea that errors are distracting and can deplete attentional resources. Therefore, it was predicted that after committing an error, if a subject is subsequently presented with two simultaneously initiated task alerts (a conflict trial), they would be more likely to miss their response opportunity for one task and stay tunneled on the other task that originally caused the error. Additionally, it was predicted that this effect would dissipate after several seconds (under different lag conditions), making the error cascade less likely when subsequent tasks are delayed before presentation. A Multi-Attribute Task Battery was used to present the paradigm and collect post-error and post-correct performance measures. The results supported both predictions: Post-error accuracy was significantly lower as compared to post-correct accuracy (as measured through post-trial error rates). Post-trial error rates were also higher at shorter lags and dissipated over time, and the effects of pre-conflict performance on post-trial error rates was especially noticeable at shorter lags (although the interaction was not statistically significant). A follow-up analysis also demonstrated that following errors (as opposed to following correct trials), participants clicked significantly more on the task that originally caused the error (regardless of lag). This continued task-engagement further supports the idea that errors lead to a cognitive tunneling effect. The study provides evidence that in a multitasking scenario, the human cognitive error-monitoring mechanism can be maladaptive, where errors beget more errors. Additionally, the experimental paradigm provides a bridge between concepts originating in highly controlled methods of cognitive science research and more applied scenarios in the field of human factors.
ContributorsLewis, Christina Mary (Author) / Gutzwiller, Robert S (Thesis advisor) / Becker, David V (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2021
189223-Thumbnail Image.png
Description
What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for

What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for HARTs. Team resilience here is defined as the ability of a team to reorganize team processes to rebound or morph to overcome an unforeseen challenge. A distinction from the individual, group, or organizational aspects of resilience for teams is how team resilience trades off with team interdependent capacity. The following study collected data from 28 teams comprised of two human participants (recruited from a university populace) and a synthetic teammate (played by an experienced experimenter). Each team completed a series of six reconnaissance missions presented to them in a Minecraft world. The research aim was to identify how to better integrate synthetic teammates for high-risk, high-stress dynamic operations to boost HART performance and HART resilience. All team communications were orally over Zoom. The primary manipulation was the communication given by the synthetic teammate (between-subjects, Task or Task+): Task only communicated the essentials, and Task+ offered clear and concise communications of its own capabilities and limitations. Performance and resilience were measured using a primary mission task score (based upon how many tasks teams completed), time-based measures (such as how long it took to recognize a problem or reorder team processes), and a subjective team resilience score (calculated from participant responses to a survey prompt). The research findings suggest the clear and concise reminders from Task+ enhanced HART performance and HART resilience during high-stress missions in which the teams were challenged by novel events. An exploratory study regarding what personalities may correlate with these improved performance metrics indicated that the Big Five trait taxonomies of extraversion and conscientiousness were positively correlated, whereas neuroticism was negatively correlated with higher HART performance and HART resilience. Future integration of synthetic teammates must consider the types of communications that will be offered to maximize HART performance and HART resilience.
ContributorsGraham, Hudson D. (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Holder, Eric (Committee member) / Arizona State University (Publisher)
Created2023
Description
During the height of COVID-19 in the summer of 2020, most major sports leagues were shut down or postponed, to limit the spread of COVID-19. However, people still yearned for the community of cheering on their favorite team. To that end, The Game Band, a Los Angeles-based game development studio,

During the height of COVID-19 in the summer of 2020, most major sports leagues were shut down or postponed, to limit the spread of COVID-19. However, people still yearned for the community of cheering on their favorite team. To that end, The Game Band, a Los Angeles-based game development studio, decided to make America's favorite pastime, baseball, virtual. Just like that, Blaseball was born. In this creative project, the Season Twelve version of Blaseball.com was subjected to analysis of its user interface and user experience elements by the author of this paper in the role of the researcher. The research questions posited by this project were as follows: - What user interface/user experience elements of the Season Twelve version of Blaseball.com were effective, and what elements detracted from the purpose of the site? - What recommendations could be made by the researcher to improve the user experience and allow for a more effective user experience of the Season Twelve version of Blaseball.com? To answer these questions, two deliverables were decided upon. The first was a research study consisting of a usability survey and interviews with web developers who worked on Blaseball or Blaseball-related projects. The second deliverable was an industry-level analysis of the Season Twelve version of Blaseball.com to be presented as a culmination of the research and work. Through this process, it had been discovered that while the site was simplistic and could easily direct users to other pages, as intended by the developers, UI elements on individual pages confused and misled users. As such, clarifications and a more in-depth UI were recommended.
ContributorsLyons, Jacob (Author) / Selgrad, Justin (Thesis director) / Gray, Robert (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
This Honors thesis was written in partial fulfillment of the requirements for a Bachelor of Science in Human Systems Engineering with Honors. The project consists of a literature review that explores the uses and applications of Machine Learning and Artificial Intelligence techniques in the field of commercial aviation. After a

This Honors thesis was written in partial fulfillment of the requirements for a Bachelor of Science in Human Systems Engineering with Honors. The project consists of a literature review that explores the uses and applications of Machine Learning and Artificial Intelligence techniques in the field of commercial aviation. After a brief introduction and explanation of the most commonly used algorithms in the field of aviation, it explores the applications of Machine Learning techniques for risk reduction, and for the betterment of in-flight operations, and pilot selection, training, and assessment.
ContributorsInderberg, Laura (Author) / Gray, Robert (Thesis director) / Demir, Mustafa (Committee member) / Barrett, The Honors College (Contributor) / Human Systems Engineering (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-12
157877-Thumbnail Image.png
Description
A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as

A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as a form of salience, results showed a more salient T2 increased recall, attenuating the AB. A more salient T1 did not differ from the control, suggesting the salience (increased size) of T2 is an important factor in the AB, while salience (increased size) of T1 does not affect the AB. Additionally, the differences in target size (50% or 100% larger) were not significantly different, showing size differences at these intervals do not affect AB results. To further explore the lack of difference in results when T1 is larger in size, I examined dynamic stimuli used as T1. T1 stimuli were presented as looming or receding. When T1 was presented as looming or receding, the AB was attenuated (T2 recall at lag 2 was significantly greater). Additionally, T2 recall was significantly worse at lags three and four (showing a larger decrease directly following the attenuated AB). When comparing looming and receding against each other, at lag 2 (when recall accuracy at its lowest) looming increased recall significantly more than receding stimuli. This is expected to be due to the immediate attentional needs related to looming stimuli. Overall, the results showed T2 salience in the form of size significantly increases recall accuracy while T1 size salience does not affect the AB results. With that, dynamic T1 stimuli increase recall accuracy at early lags (lag 2) while it decreases recall accuracy at later lags (lags 3 and 4). This result is found when the stimuli are presented at a larger size (stimuli appearing closer), suggesting the more eminent need for attention results in greater effects on the AB.
ContributorsLafko, Stacie (Author) / Becker, Vaughn (Thesis advisor) / Branaghan, Russell (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
156947-Thumbnail Image.png
Description
Interface design has a large impact on the usability of a system, and the addition of multitasking only makes these systems more difficult to use. Information processing, mental workload, and interface design are determining factors that impact the performance of usability, and therefore interface design needs to be more adapted

Interface design has a large impact on the usability of a system, and the addition of multitasking only makes these systems more difficult to use. Information processing, mental workload, and interface design are determining factors that impact the performance of usability, and therefore interface design needs to be more adapted to users undergoing a high mental workload. This study examines how a primary task, visual tracking, is affected by a secondary task, memory. Findings show that a high mental workload effects reaction time and memory performance on layouts with a high index of difficulty. Further research should analyze the effects of manipulating target size and distance apart independently from manipulating the index of difficulty on performance.
ContributorsSrikantha, Sainjeev (Author) / Gray, Robert (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2018
156946-Thumbnail Image.png
Description
Across a wide variety of sports, our visual abilities have been proven to profoundly impact performance. Numerous studies have examined the effects of visual training in athletes and have found supporting evidence that performance can be enhanced through vision training. The present case study aimed to expand on research in

Across a wide variety of sports, our visual abilities have been proven to profoundly impact performance. Numerous studies have examined the effects of visual training in athletes and have found supporting evidence that performance can be enhanced through vision training. The present case study aimed to expand on research in the field of stroboscopic visual training. To do so, twelve softball players, half novice and half expert, took part in this study. Six underwent a four-week stroboscopic training program and six underwent a four-week non-stroboscopic training program. The quantitative data collected in this case study showed that training group (stroboscopic vs. non-stroboscopic) and skill level (novice vs expert) of each softball player were significant factors that contributed to how much their fielding performance increased. Qualitative data collected in this study support these findings as well as players’ subjective reports that their visual and perceptual skills had increased. Players trained in the stroboscopic group reported that they felt like they could “focus” on the ball better and “predict” where the ball would be. Future research should examine more participants across a longer training period and determine if more data would yield even greater significance for stroboscopic training.
ContributorsEdgerton, Lindsey Ann (Author) / Gray, Robert (Thesis advisor) / Branaghan, Russ (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2018
157710-Thumbnail Image.png
Description
With the growth of autonomous vehicles’ prevalence, it is important to understand the relationship between autonomous vehicles and the other drivers around them. More specifically, how does one’s knowledge about autonomous vehicles (AV) affect positive and negative affect towards driving in their presence? Furthermore, how does trust of autonomous vehicles

With the growth of autonomous vehicles’ prevalence, it is important to understand the relationship between autonomous vehicles and the other drivers around them. More specifically, how does one’s knowledge about autonomous vehicles (AV) affect positive and negative affect towards driving in their presence? Furthermore, how does trust of autonomous vehicles correlate with those emotions? These questions were addressed by conducting a survey to measure participant’s positive affect, negative affect, and trust when driving in the presence of autonomous vehicles. Participants’ were issued a pretest measuring existing knowledge of autonomous vehicles, followed by measures of affect and trust. After completing this pre-test portion of the study, participants were given information about how autonomous vehicles work, and were then presented with a posttest identical to the pretest. The educational intervention had no effect on positive or negative affect, though there was a positive relationship between positive affect and trust and a negative relationship between negative affect and trust. These findings will be used to inform future research endeavors researching trust and autonomous vehicles using a test bed developed at Arizona State University. This test bed allows for researchers to examine the behavior of multiple participants at the same time and include autonomous vehicles in studies.
ContributorsMartin, Sterling (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019