Matching Items (6)

Filtering by

Clear all filters

149132-Thumbnail Image.png

Colorado River Campsite Monitoring, Grand Canyon National Park, Arizona, 1998–2012

Description

River rafting trips and hikers use sandbars along the Colorado River in Marble and Grand Canyons as campsites. The U.S. Geological Survey evaluated the effects of Glen Canyon Dam operations on campsite areas on sandbars along the Colorado River in

River rafting trips and hikers use sandbars along the Colorado River in Marble and Grand Canyons as campsites. The U.S. Geological Survey evaluated the effects of Glen Canyon Dam operations on campsite areas on sandbars along the Colorado River in Grand Canyon National Park. Campsite area was measured annually from 1998 to 2012 at 37 study sites between Lees Ferry and Diamond Creek, Arizona. The primary purpose of this report is to present the methods and results of the project.

Campsite area surveys were conducted using total station survey methods to outline the perimeter of camping area at each study site. Campsite area is defined as any region of smooth substrate (most commonly sand) with no more than an 8 degree slope and little or no vegetation. We used this definition, but relaxed the slope criteria to include steeper areas near boat mooring locations where campers typically establish their kitchens.

The results show that campsite area decreased over the course of the study period, but at a rate that varied by elevation zone and by survey period. Time-series plots show that from 1998 to 2012, high stage-elevation (greater than the 25,000 ft3/s stage-elevation) campsite area decreased significantly, although there was no significant trend in low stage-elevation (15,000–20,000 ft3/s) campsite area. High stage-elevation campsite area increased after the 2004 and 2008 high flows, but decreased in the intervals between high flows. Although no overall trend was detected for low stage-elevation campsite areas, they did increase after high-volume dam releases equal to or greater than about 20,000 ft3/s. We conclude that dam operations have not met the management objectives of the Glen Canyon Adaptive Management program to increase the size of camping beaches in critical and non-critical reaches of the Colorado River between Glen Canyon Dam and Lake Mead.

Contributors

Agent

Created

Date Created
2014-07

149111-Thumbnail Image.png

Assessing Juvenile Native Fish Demographic Responses to a Steady Flow Experiment in a Large Regulated River

Description

ABSTRACT: The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila

ABSTRACT: The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority. Here, we test hypotheses concerning temporal variation in juvenile humpback chub apparent survival rates and abundance by comparing estimates between hydropeaking and steady discharge regimes over a 3-year period (July 2009–July 2012). The most supported model ignored flow type (steady vs hydropeaking) and estimated a declining trend in daily apparent survival rate across years (99.90%, 99.79% and 99.67% for 2009, 2010 and 2011, respectively). Corresponding abundance of juvenile humpback chub increased temporally; open population model estimates ranged from 615 to 2802 individuals/km, and closed model estimates ranged from 94 to 1515 individuals/km. These changes in apparent survival and abundance may reflect broader trends, or simply represent inter-annual variation. Important findings include (i) juvenile humpback chub are currently surviving and recruiting in the mainstem Colorado River with increasing abundance; (ii) apparent survival does not benefit from steady fall discharges from Glen Canyon Dam; and (iii) direct assessment of demographic parameters for juvenile endangered fish are possible and can rapidly inform management actions in regulated rivers.

Contributors

Agent

Created

Date Created
2015-02-10

149140-Thumbnail Image.png

Surprise and Opportunity for Learning in Grand Canyon: The Glen Canyon Dam Adaptive Management Program

Description

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

Contributors

Agent

Created

Date Created
2015

149147-Thumbnail Image.png

Ecosystem Modeling for Evaluation of Adaptive Management Policies in the Grand Canyon

Description

An Adaptive Environmental Assessment and Management workshop process was used to assist Grand Canyon scientists and managers in developing conceptual and simulation models for the Colorado ecosystem affected by Glen Canyon Dam. This model examines ecosystem variables and processes at

An Adaptive Environmental Assessment and Management workshop process was used to assist Grand Canyon scientists and managers in developing conceptual and simulation models for the Colorado ecosystem affected by Glen Canyon Dam. This model examines ecosystem variables and processes at multiple scales in space and time, ranging from feet and hours for benthic algal response to diurnal flow changes, to reaches and decades for sediment storage and dynamics of long-lived native fish species. Its aim is to help screen policy options ranging from changes in hourly variation in flow allowed from Glen Canyon Dam, to major structural changes for restoration of more natural temperature regimes. It appears that we can make fairly accurate predictions about some components of ecosystem response to policy change (e.g., autochthonous primary production, insect communities, riparian vegetation, rainbow trout population), but we are moderately or grossly uncertain about others (e.g., long-term sediment storage, response of native and non-native fishes to physical habitat restoration). Further, we do not believe that existing monitoring programs are adequate to detect responses of native fishes or vegetation to anything short of gross habitat changes. Some experimental manipulations (such as controlled floods for beach/habitat- building) should proceed, but most should await development of better monitoring programs and sound temporal baseline information from those programs.

Contributors

Agent

Created

Date Created
2000-12

149110-Thumbnail Image.png

A Quantitative Life History of Endangered Humpback Chub That Spawn in the Little Colorado River: Variation in Movement, Growth, and Survival

Description

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to under- stand how partial migratory populations are responding to ongoing environmen- tal change. Environmental change can

While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to under- stand how partial migratory populations are responding to ongoing environmen- tal change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark–recapture data col- lected in 2009–2012. We compare survival and growth estimates between the Col- orado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July–September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long resi- dents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.

Contributors

Created

Date Created
2014-01-16

Paul Grams Oral History

Description

Summary: 

Interview conducted by: Dr. Paul Hirt, Arizona southwestern U.S. state. State University and Jennifer Sweeney, Four East Historical Research, LLC. Glen Canyon Dam Adaptive Management Program Administrative History Project. Administered by Arizona southwestern U.S. state. State University Supported by a

Summary: 

Interview conducted by: Dr. Paul Hirt, Arizona southwestern U.S. state. State University and Jennifer Sweeney, Four East Historical Research, LLC. Glen Canyon Dam Adaptive Management Program Administrative History Project. Administered by Arizona southwestern U.S. state. State University Supported by a grant from the US Bureau of Reclamation.

Biography: 

Paul Grams has worked directly with the Glen Canyon Dam Adaptive Management Program (GCDAMP) since 2008, as a program manager and research hydrologist at the Grand Canyon Monitoring and Research Center (GCMRC). His involvement in Grand Canyon studies goes back to 1991, when he took a Colorado River research trip as part of an undergraduate science course. Grams is an expert on the effects of dams on river geomorphology and sediment transport. He holds a BA in Geology from Middlebury College, an MS in Geology from Utah State University, and a PhD in Geography and Environmental Engineering from Johns Hopkins University.

Contributors

Agent

Created

Date Created
2020-01-24