Matching Items (24)

Filtering by

Clear all filters

131363-Thumbnail Image.png

Feature Extraction on Sentiment Attitude Values to Better Predict the Stock Market Using Twitter Sentiment

Description

Behavioral economics suggests that emotions can affect an individual’s decision making. Recent research on this idea’s application on large societies hints that there may exist some correlation or maybe even some causation relationship between public sentiment—at least what can be

Behavioral economics suggests that emotions can affect an individual’s decision making. Recent research on this idea’s application on large societies hints that there may exist some correlation or maybe even some causation relationship between public sentiment—at least what can be pulled from Twitter—and the movement of the stock market. One major result of consistent research on whether or not public sentiment can predict the movement of the stock market is that public sentiment, as a feature, is becoming more and more valid as a variable for stock-market-based machine learning models. While raw values typically serve as invaluable points of data, when training a model, many choose to “engineer” new features for their models—deriving rates of change or range values to improve model accuracy.
Since it doesn’t hurt to attempt to utilize feature extracted values to improve a model (if things don’t work out, one can always use their original features), the question may arise: how could the results of feature extraction on values such as sentiment affect a model’s ability to predict the movement of the stock market? This paper attempts to shine some light on to what the answer could be by deriving TextBlob sentiment values from Twitter data, and using Granger Causality Tests and logistic and linear regression to test if there exist a correlation or causation between the stock market and features extracted from public sentiment.

Contributors

Agent

Created

Date Created
2020-05

133853-Thumbnail Image.png

Dining Hall Web Application

Description

For my thesis project, I have developed a cash register web application for the Arizona State University Barrett Dining Hall. I previously worked at the Barrett Dining Hall, and I would occasionally step in as a cashier. This work is

For my thesis project, I have developed a cash register web application for the Arizona State University Barrett Dining Hall. I previously worked at the Barrett Dining Hall, and I would occasionally step in as a cashier. This work is how I came to be familiar with the system and all its inefficiencies. The system requires multiple user inputs to implement even the most basic of tasks, is not user-friendly, and therefore very prone to error. In the event that multiple incorrect inputs are entered, the software will freeze, and the user will have to turn off the computer and turn it back on. In theory, this application is an improvement over the software system that is currently in place in that the user interface has been specifically designed to be user-friendly. This application reduces the number of required user inputs by automating certain tasks (such as pricing and determining the meal period), thereby reducing the chance of user error. It is also an improvement in that it allows students to log in to the system to view how many meals they have left, how much M&G is in their account, and how many guest passes they have left. This functionality is extremely important because this is a feature that is not currently in place, and is something that students have actively complained about. Currently, if students want to check on their meal plan, they have to either physically go to a dining hall and ask the cashier, or call a toll-free number. The two technologies used to develop this application are C# and XML. These technologies were chosen because I wanted to learn something new for this project to broaden my knowledge. I also happened to be taking a class at the start of this project that utilized C# and XML for Web Applications, and it seemed like the perfect opportunity to transfer over the skills I had been learning.

Contributors

Created

Date Created
2018-05

132774-Thumbnail Image.png

Using Machine Learning to Predict the NBA

Description

Machine learning is one of the fastest growing fields and it has applications in almost any industry. Predicting sports games is an obvious use case for machine learning, data is relatively easy to collect, generally complete data is available, and

Machine learning is one of the fastest growing fields and it has applications in almost any industry. Predicting sports games is an obvious use case for machine learning, data is relatively easy to collect, generally complete data is available, and outcomes are easily measurable. Predicting the outcomes of sports events may also be easily profitable, predictions can be taken to a sportsbook and wagered on. A successful prediction model could easily turn a profit. The goal of this project was to build a model using machine learning to predict the outcomes of NBA games.
In order to train the model, data was collected from the NBA statistics website. The model was trained on games dating from the 2010 NBA season through the 2017 NBA season. Three separate models were built, predicting the winner, predicting the total points, and finally predicting the margin of victory for a team. These models learned on 80 percent of the data and validated on the other 20 percent. These models were trained for 40 epochs with a batch size of 15.
The model for predicting the winner achieved an accuracy of 65.61 percent, just slightly below the accuracy of other experts in the field of predicting the NBA. The model for predicting total points performed decently as well, it could beat Las Vegas’ prediction 50.04 percent of the time. The model for predicting margin of victory also did well, it beat Las Vegas 50.58 percent of the time.

Contributors

Created

Date Created
2019-05

133010-Thumbnail Image.png

Technology Transformations: SmartAid - An Intelligent First Aid Kit

Description

SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice

SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to teach users about the different types of first aid kit items and how to treat minor injuries, step by step. Using Alexa and RaspberryPi, SmartAid was designed as an added attachment to first aid kits. Alexa Services were installed into a RaspberryPi to create a custom Amazon device, and from there, using the Alexa Interaction Model and the Lambda function services, SmartAid was developed. After the designing and coding of the application, a user guide was created to provide users with information on what items are included in the first aid kit, what types of injuries can be treated through first aid, and how to use SmartAid. The
application was tested for its usability and practicality by a small sample of students. Users provided suggestions on how to make the application more versatile and functional, and confirmed that the application made first aid easier and was something that they could see themselves using. While this application is not aimed to replace the current physical guide solution completely, the findings of this project show that SmartAid has potential to stand in as an improved, easy to use, and convenient alternative for first aid guidance.

Contributors

Created

Date Created
2019-05

132957-Thumbnail Image.png

Predicting Sneaker Resale Prices using Machine Learning

Description

This thesis dives into the world of machine learning by attempting to create an application that will accurately predict whether or not a sneaker will resell at a profit. To begin this study, I first researched different machine learning algorithms

This thesis dives into the world of machine learning by attempting to create an application that will accurately predict whether or not a sneaker will resell at a profit. To begin this study, I first researched different machine learning algorithms to determine which would be best for this project. After ultimately deciding on using an artificial neural network, I then moved on to collecting data, using StockX and Twitter. StockX is a platform where individuals can post and resell shoes, while also providing statistics and analytics about each pair of shoes. I used StockX to retrieve data about the actual shoe, which involved retrieving data for the network feature variables: gender, brand, and retail price. Additionally, I also retrieved the data for the average deadstock price for each shoe, which describes what the mean price of new, unworn shoes are selling for on StockX. This data was used with the retail price data to determine whether or not a shoe has been, on average, selling for a profit. I used Twitter’s API to retrieve links to different shoes on StockX along with retrieving the number of favorites and retweets each of those links had. These metrics were used to account for ‘hype’ of the shoe, with shoes traditionally being more profitable the larger the hype surrounding them. After preprocessing the data, I trained the model using a randomized 80% of the data. On average, the model had about a 65-70% accuracy range when tested with the remaining 20% of the data. Once the model was optimized, I saved it and uploaded it to a web application that took in user input for the five feature variables, tested the datapoint using the model, and outputted the confidence in whether or not the shoe would generate a profit.
From a technical perspective, I used Python for the whole project, while also using HTML/CSS for the front-end of the application. As for key packages, I used Keras, an open source neural network library to build the model; data preprocessing was done using sklearn’s various subpackages. All charts and graphs were done using data visualization libraries matplotlib and seaborn. These charts provided insight as to what the final dataset looked like. They showed how the brand distribution is relatively close to what it should be, while the gender distribution was heavily skewed. Future work on this project would involve expanding the dataset, automating the entirety of the data retrieval process, and finally deploying the project on the cloud for users everywhere to use the application.

Contributors

Agent

Created

Date Created
2019-05

131260-Thumbnail Image.png

Machine Learning: A Sentiment Analysis of Customer Reviews

Description

Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data

Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine learning applications expand to numerous fields; however, I chose to focus on machine learning with a business perspective for this thesis, specifically e-commerce.

The e-commerce market utilizes information to target customers and drive business. More and more online services have become available, allowing consumers to make purchases and interact with an online system. For example, Amazon is one of the largest Internet-based retail companies. As people shop through this website, Amazon gathers huge amounts of data on its customers from personal information to shopping history to viewing history. After purchasing a product, the customer may leave reviews and give a rating based on their experience. Performing analytics on all of this data can provide insights into making more informed business and marketing decisions that can lead to business growth and also improve the customer experience.
For this thesis, I have trained binary classification models on a publicly available product review dataset from Amazon to predict whether a review has a positive or negative sentiment. The sentiment analysis process includes analyzing and encoding the human language, then extracting the sentiment from the resulting values. In the business world, sentiment analysis provides value by revealing insights into customer opinions and their behaviors. In this thesis, I will explain how to perform a sentiment analysis and analyze several different machine learning models. The algorithms for which I compared the results are KNN, Logistic Regression, Decision Trees, Random Forest, Naïve Bayes, Linear Support Vector Machines, and Support Vector Machines with an RBF kernel.

Contributors

Agent

Created

Date Created
2020-05

134157-Thumbnail Image.png

Blockchain Design and Simulation

Description

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of blockchain before stating potential use cases for blockchain simulation software. The paper then gives a brief literature review of blockchain's role, both as a disruptive technology and a foundational technology. The literature review also addresses the potential and difficulties regarding the use of blockchain in Internet of Things (IoT) networks, and also describes the limitations of blockchain in general regarding computational intensity, storage capacity, and network architecture. Next, the paper gives the specification for a generic blockchain structure, with summaries on the behaviors and purposes of transactions, blocks, nodes, miners, public & private key cryptography, signature validation, and hashing. Finally, the author gives an overview of their specific implementation of the blockchain using C/C++ and OpenSSL. The overview includes a brief description of all the classes and data structures involved in the implementation, including their function and behavior. While the implementation meets the requirements set forward in the specification, the results are more qualitative and intuitive, as time constraints did not allow for quantitative measurements of the network simulation. The paper concludes by discussing potential applications for the simulator, and the possibility for future hardware implementations of blockchain.

Contributors

Agent

Created

Date Created
2017-12

134079-Thumbnail Image.png

LEGv8 Runtime Simulator

Description

This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David

This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable alternative to the full ARMv8 instruction set. The MIPS edition of that same book is used in the Computer Organization course at ASU. This class makes heavy use of the "MARS" MIPS simulator, which allows students to write and run their own MIPS assembly programs. Writing assembly language programs is a key component of the course, as assembly programs have many design difficulties as compared to a high-level language. This project is a fork of the MARS project. The interface and functionality remain largely the same aside from the change to supporting the LEGv8 syntax and instruction set. Faculty used to the MARS environment from teaching Computer Organization should only have to adjust to the new language standard, as the editor and environment will be familiar. The available instructions are basic arithmetic/logical operations, memory interaction, and flow control. Both floating-point and integer operations are supported, with limited support of conditional execution. Only branches can be conditionally executed, per LEGv8. Directives remain in the format supported by MARS, as documentation on ARM-style directives is both sparse and agreeable to this standard. The operating system functions supported by the MARS simulator also remain, as there is no generally standardized requirements for operating system interactions.

Contributors

Agent

Created

Date Created
2017-12

135380-Thumbnail Image.png

Exploring Computational Thinking in 9-12 Education: Developing a Computer Science Curriculum for Bioscience High School

Description

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.

Contributors

Agent

Created

Date Created
2016-05

135236-Thumbnail Image.png

Tenga: A Case Study on Building Web Applications

Description

Tenga is an e-commerce demo web application for students studying Distributed Software Development and Software Integration and Engineering at Arizona State University (ASU). The application, written in C#, aims to empower students to understand how complex systems are build. Complementing

Tenga is an e-commerce demo web application for students studying Distributed Software Development and Software Integration and Engineering at Arizona State University (ASU). The application, written in C#, aims to empower students to understand how complex systems are build. Complementing the two courses taught at ASU, it seeks to demonstrate how the concepts taught in the two classes can be applied to the real world. In addition to the practical software development process, Tenga also bring in the topics that students are inexperienced with such as recommendation systems and ranking algorithms. Tenga is going to be used in classrooms to help students to learn fundamental issues in Web software development and software integration and to understand tools and skill sets required to built a web application.

Contributors

Created

Date Created
2016-05