Matching Items (178)
Filtering by

Clear all filters

151694-Thumbnail Image.png
Description
This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts

This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts to "clean up" pre-1950s romanticized performances have greatly limited the freedom and experimentation that was the original intention of these dances. Prior to this study, few ornamented editions of these works have been published. Although traditional practices do not necessarily encourage classical improvisation in performance I argue that manipulation of the melodic and rhythmic layers over the established harmonic progressions will not only provide diversity within the individual dance movements, but also further engage the ears of the performer and listener which encourages further creative exploration. I will focus this study on the ornamentation of all six Sarabandes from J.S. Bach's French Suites and show how various types of melodic and rhythmic variation can provide aurally pleasing alternatives to the composed score without disrupting the harmonic fluency. The author intends this document to be used as a pedagogical tool and the fully ornamented Sarabandes from J.S. Bach's French Suites are included with this document.
ContributorsOakley, Ashley (Author) / Meir, Baruch (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Pagano, Caio (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
Description
This final research paper provides both a performer's perspective and a recording of double clarinet literature by William O. Smith (b. 1926), Eric Mandat (b. 1957), and Jody Rockmaker (b. 1961). The document includes musical examples, references to the recording, and interviews with the composers. The first chapter contains a

This final research paper provides both a performer's perspective and a recording of double clarinet literature by William O. Smith (b. 1926), Eric Mandat (b. 1957), and Jody Rockmaker (b. 1961). The document includes musical examples, references to the recording, and interviews with the composers. The first chapter contains a brief literature review of sources on world double clarinets, biographies of the above-mentioned composers, and other pertinent information. Chapters 2-4 include the performer's perspective on the following works: Epitaphs for Double Clarinet by William O. Smith, Double Life for Solo Clarinet by Eric Mandat, and two compositions by Jody Rockmaker, Half and Half for demi-clarinet in A, and Double Dip. The final chapter examines how double clarinet music has evolved, the challenges and limitations of the repertoire, and the future of the double clarinet genre.
ContributorsEndel, Kimberly Michelle (Author) / Spring, Robert S (Thesis advisor) / Gardner, Joshua (Committee member) / Norton, Kay (Committee member) / Micklich, Albie (Committee member) / Arizona State University (Publisher)
Created2013
151947-Thumbnail Image.png
Description
GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables a low on-resistance required for RF devices. Self-heating issues with GaN HEMT and lack of understanding of various phenomena are hindering their widespread commercial development. There is a need to understand device operation by developing a model which could be used to optimize electrical and thermal characteristics of GaN HEMT design for high power and high frequency operation. In this thesis work a physical simulation model of AlGaN/GaN HEMT is developed using commercially available software ATLAS from SILVACO Int. based on the energy balance/hydrodynamic carrier transport equations. The model is calibrated against experimental data. Transfer and output characteristics are the key focus in the analysis along with saturation drain current. The resultant IV curves showed a close correspondence with experimental results. Various combinations of electron mobility, velocity saturation, momentum and energy relaxation times and gate work functions were attempted to improve IV curve correlation. Thermal effects were also investigated to get a better understanding on the role of self-heating effects on the electrical characteristics of GaN HEMTs. The temperature profiles across the device were observed. Hot spots were found along the channel in the gate-drain spacing. These preliminary results indicate that the thermal effects do have an impact on the electrical device characteristics at large biases even though the amount of self-heating is underestimated with respect to thermal particle-based simulations that solve the energy balance equations for acoustic and optical phonons as well (thus take proper account of the formation of the hot-spot). The decrease in drain current is due to decrease in saturation carrier velocity. The necessity of including hydrodynamic/energy balance transport models for accurate simulations is demonstrated. Possible ways for improving model accuracy are discussed in conjunction with future research.
ContributorsChowdhury, Towhid (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151961-Thumbnail Image.png
Description
About piano students who display disruptive behavior and perform far below reasonable expectations, teachers first conclude that they are lazy, rude, disinterested, and/or lacking intelligence or ability. Most dismiss such students from studios and advise parents to discontinue lessons. In truth, many of these students are both highly gifted and

About piano students who display disruptive behavior and perform far below reasonable expectations, teachers first conclude that they are lazy, rude, disinterested, and/or lacking intelligence or ability. Most dismiss such students from studios and advise parents to discontinue lessons. In truth, many of these students are both highly gifted and also have a learning disability. Examined literature shows that the incidence of dyslexia and other learning disabilities in the gifted learner population is several times that of the regular learner population. Although large volumes of research have been devoted to dyslexia, and more recently to dyslexia and music (in the classroom and some in individual instrumental instruction), there is no evidence of the same investigation in relation to the specific needs of highly gifted dyslexic students in learning to play the piano. This project examines characteristics of giftedness and dyslexia, gifted learners with learning disabilities, and the difficulties they encounter in learning to read music and play keyboard instruments. It includes historical summaries of author's experience with such students and description of their progress and success. They reveal some of practical strategies that evolved through several decades of teaching regular and gifted dyslexic students that helped them overcome the challenges and learn to play the piano. Informal conversations and experience exchanges with colleagues, as well as a recently completed pilot study also showed that most piano pedagogues had no formal opportunity to learn about this issue and to be empowered to teach these very special students. The author's hope is to offer personal insights, survey of current knowledge, and practical suggestions that will not only assist piano instructors to successfully teach highly gifted learners with dyslexia, but also inspire them to learn more about the topic.
ContributorsVladikovic, Jelena (Author) / Humphreys, Jere T. (Thesis advisor) / Meir, Baruch (Thesis advisor) / Norton, Kay (Committee member) / Hamilton, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151814-Thumbnail Image.png
Description
This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the

This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals assists in categorizing defects leading to failure/degradation as: oxygen vacancies, thermally activated defects within the bandgap, channel-dielectric interface defects, and acceptor-like or donor-like trap states. Microwave anneal has been confirmed to enhance the quality of thin films, however future work entails extending the use of electromagnetic radiation in controlled ambient to facilitate quick post fabrication anneal to improve the functionality and lifetime of these low temperature fabricated TFTs.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, N David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
151646-Thumbnail Image.png
Description
The purpose of this project is twofold: to contribute to the literature of chamber ensembles comprising mixed wind, string, and percussion instruments by producing arrangements of three piano rags by William Bolcom; and to highlight Bolcom's pivotal role in the ragtime revival of the 1960's and 1970's. Through his influence

The purpose of this project is twofold: to contribute to the literature of chamber ensembles comprising mixed wind, string, and percussion instruments by producing arrangements of three piano rags by William Bolcom; and to highlight Bolcom's pivotal role in the ragtime revival of the 1960's and 1970's. Through his influence as a scholar, composer, and performer, Bolcom (b. 1938), one of the most prominent American composers of his generation, helped garner respect for ragtime as art music and as one of America's great popular music genres. Bolcom's 3 Ghost Rags were written in the tradition of classic piano rags, but with a compositional sensibility that is influenced by the fifty years that separate them from the close of the original ragtime era. The basis for the present orchestrations of 3 Ghost Rags is the collection of instrumental arrangements of piano rags published by Stark Publishing Co., entitled Standard High-Class Rags. More familiarly known as the "Red Back Book," this publication was representative of the exchange of repertoire between piano and ensembles and served as a repertory for the various ragtime revivals that occurred later in the twentieth century. In creating these orchestrations of Bolcom's piano rags, the author strove to provide another medium in which Bolcom's music could be performed, while orchestrating the music for an historically appropriate ensemble.
ContributorsMelley, Eric Charles (Author) / Hill, Gary W. (Thesis advisor) / Bailey, Wayne (Committee member) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Russell, Timothy (Committee member) / Arizona State University (Publisher)
Created2013
151327-Thumbnail Image.png
Description
The integration of yoga into the music curriculum has the potential of offering many immediate and life-long benefits to musicians. Yoga can help address issues such as performance anxiety and musculoskeletal problems, and enhance focus and awareness during musical practice and performance. Although the philosophy of yoga has many similarities

The integration of yoga into the music curriculum has the potential of offering many immediate and life-long benefits to musicians. Yoga can help address issues such as performance anxiety and musculoskeletal problems, and enhance focus and awareness during musical practice and performance. Although the philosophy of yoga has many similarities to the process of learning a musical instrument, the benefits of yoga for musicians is a topic that has gained attention only recently. This document explores several ways in which the practice and philosophy of yoga can be fused with saxophone pedagogy as one way to prepare students for a healthy and successful musical career. A six-week study at Arizona State University was conducted to observe the effects of regular yoga practice on collegiate saxophone students. Nine participants attended a sixty-minute "yoga for musicians" class twice a week. Measures included pre- and post- study questionnaires as well as personal journals kept throughout the duration of the study. These self-reported results showed that yoga had positive effects on saxophone playing. It significantly increased physical comfort and positive thinking, and improved awareness of habitual patterns and breath control. Student participants responded positively to the idea of integrating such a course into the music curriculum. The integration of yoga and saxophone by qualified professionals could also be a natural part of studio class and individual instruction. Carrie Koffman, professor of saxophone at The Hartt School, University of Hartford, has established one strong model for the combination of these disciplines. Her methods and philosophy, together with the basics of Western-style hatha yoga, clinical reports on performance injuries, and qualitative data from the ASU study are explored. These inquiries form the foundation of a new model for integrating yoga practice regularly into the saxophone studio.
ContributorsAdams, Allison Dromgold (Author) / Norton, Kay (Thesis advisor) / Hill, Gary (Committee member) / McAllister, Timothy (Committee member) / Micklich, Albie (Committee member) / Standley, Eileen (Committee member) / Arizona State University (Publisher)
Created2012