Matching Items (41)
151322-Thumbnail Image.png
Description
With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated with the operation of smart grids, this dissertation addresses two important aspects of smart grids: increased penetration of renewable resources, and increased reliance on sensor systems to improve reliability and performance of critical power system components. Present renewable portfolio standards are changing both structural and performance characteristics of power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. The present study investigates the impact of increased penetration of PV systems on steady state performance as well as transient stability of a large power system which is a portion of the Western U.S. interconnection. Utility scale and residential rooftop PVs are added to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance. With increased penetration of the renewable energy resources, and with the current loading scenario, more transmission system components such as transformers and circuit breakers are subject to increased stress and overloading. This research work explores the feasibility of increasing system reliability by applying condition monitoring systems to selected circuit breakers and transformers. A very important feature of smart grid technology is that this philosophy decreases maintenance costs by deploying condition monitoring systems that inform the operator of impending failures; or the approach can ameliorate problematic conditions. A method to identify the most critical transformers and circuit breakers with the aid of contingency ranking methods is presented in this study. The work reported in this dissertation parallels an industry sponsored study in which a considerable level of industry input and industry reported concerns are reflected.
ContributorsEftekharnejad, Sara (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Si, Jennie (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
152404-Thumbnail Image.png
Description
Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric and its characteristics can give information about the insulation aging. Most existing test methods cannot identify different kinds of defects.

Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric and its characteristics can give information about the insulation aging. Most existing test methods cannot identify different kinds of defects. Also, the practical application of PD detection in most existing test methods is restricted by weak PD signals and strong electric field disturbance from surroundings. In order to monitor aging situation in detail, types of PDs are important features to take into account. To classify different types of PDs, pulse sequence analysis (PSA) method is advocated to analyze PDs in the rod-plane model. This method can reflect cumulative effects of PDs, which are always ignored when only measuring PD value. It also shows uniform characteristics when different kinds of detecting system are utilized. Moreover, it does not need calibration. Analysis results from PSA show highly consistent distribution patterns for the same type of PDs and significant differences in the distribution patterns among types of PDs. Furthermore, a new method to detect PD signals using fiber bragg grating (FBG) based PD sensor is studied in this research. By using a piezoelectric ceramic transducer (PZT), small PD signals can be converted to pressure signal and then converted to an optical wavelength signal with FBG. The optical signal is isolated from the electric field; therefore its attenuation and anti-jamming performance will be better than traditional methods. Two sensors, one with resonant frequency of 42.7 kHz and the other 300 kHz, were used to explore the performance of this testing system. However, there were issues with the sensitivity of the sensors of these devices and the results have been communicated with the company. These devices could not give the results at the same level of accuracy as the conventional methods.
ContributorsCui, Longfei (Author) / Gorur, Ravi (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
Description
The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and

The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.
ContributorsBanerjee, Koustubh (Author) / Gorur, Ravi (Committee member) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
152576-Thumbnail Image.png
Description
With growing complexity of power grid interconnections, power systems may become increasingly vulnerable to low frequency oscillations (especially inter-area oscillations) and dependent on stabilizing controls using either local signals or wide-area signals to provide adequate damping. In recent years, the ability and potential to use wide-area signals for control purposes

With growing complexity of power grid interconnections, power systems may become increasingly vulnerable to low frequency oscillations (especially inter-area oscillations) and dependent on stabilizing controls using either local signals or wide-area signals to provide adequate damping. In recent years, the ability and potential to use wide-area signals for control purposes has increased since a significant investment has been made in the U. S. in deploying synchrophasor measurement technology. Fast and reliable communication systems are essential to enable the use of wide-area signals in controls. If wide-area signals find increased applicability in controls the security and reliability of power systems could be vulnerable to disruptions in communication systems. Even though numerous modern techniques have been developed to lower the probability of communication errors, communication networks cannot be designed to be always reliable. Given this background the motivation of this work is to build resiliency in the power grid controls to respond to failures in the communication network when wide-area control signals are used. In addition, this work also deals with the delay uncertainty associated with the wide-area signal transmission. In order to counteract the negative impact of communication failures on control effectiveness, two approaches are proposed and both approaches are motivated by considering the use of a robustly designed supplementary damping control (SDC) framework associated with a static VAr compensator (SVC). When there is no communication failure, the designed controller guarantees enhanced improvement in damping performance. When the wide-area signal in use is lost due to a communication failure, however, the resilient control provides the required damping of the inter-area oscillations by either utilizing another wide-area measurement through a healthy communication route or by simply utilizing an appropriate local control signal. Simulation results prove that with either of the proposed controls included, the system is stabilized regardless of communication failures, and thereby the reliability and sustainability of power systems is improved. The proposed approaches can be extended without loss of generality to the design of any resilient controller in cyber-physical engineering systems.
ContributorsZhang, Song (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Undrill, John (Committee member) / Arizona State University (Publisher)
Created2014
153326-Thumbnail Image.png
Description
An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distri- bution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of the PV generators during the variation

An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distri- bution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of the PV generators during the variation in the distribution system states is necessary when studying the effects of controller bandwidths, multiple voltage correction devices, and anti-islanding. This work explores the use of dynamic phasors and differential algebraic equations (DAE) for impact analysis of the PV generators on the existing distribution feeders.

The voltage unbalance induced by PV generators can aggravate the existing unbalance due to load mismatch. An increased phase unbalance significantly adds to the neutral currents, excessive neutral to ground voltages and violate the standards for unbalance factor. The objective of this study is to analyze and quantify the impacts of unbalanced PV installations on a distribution feeder. Additionally, a power electronic converter solution is proposed to mitigate the identified impacts and validate the solution's effectiveness through detailed simulations in OpenDSS.

The benefits associated with the use of energy storage systems for electric- utility-related applications are also studied. This research provides a generalized framework for strategic deployment of a lithium-ion based energy storage system to increase their benefits in a distribution feeder. A significant amount of work has been performed for a detailed characterization of the life cycle costs of an energy storage system. The objectives include - reduction of the substation transformer losses, reduction of the life cycle cost for an energy storage system, and accommodate the PV variability.

The distribution feeder laterals in the distribution feeder with relatively high PV generation as compared to the load can be operated as microgrids to achieve reliability, power quality and economic benefits. However, the renewable resources are intermittent and stochastic in nature. A novel approach for sizing and scheduling the energy storage system and microtrubine is proposed for reliable operation of microgrids. The size and schedule of the energy storage system and microturbine are determined using Benders' decomposition, considering the PV generation as a stochastic resource.
ContributorsNagarajan, Adarsh (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015
153122-Thumbnail Image.png
Description
The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of

The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use.

In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique.

The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be the best method to detect bad data. An H-infinity robust control technique was applied for the first time to design discrete EMS controller for the FREEDM system.
ContributorsMusani, Aatif (Author) / Heydt, Gerald (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
153346-Thumbnail Image.png
Description
This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact

This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact phase spacing, insight into the possibility of increasing the security rating of transmission lines is the primary focus through increased mutual coupling and decreased positive sequence reactance. Compact design can reduce the required corridor width to as little as 31% of traditional designs, especially with the use of inter-phase spacers. Typically transmission lines are built with conservative clearances, with difficulty obtaining right of way, more compact phase spacing may be needed. With design consideration significant compaction can produce an increase by 5-25% in the transmission line security (steady state stability) rating. In addition, other advantages and disadvantages of compact phase design are analyzed. Also, the next two topics: high temperature low sag conductors and high phase order designs include the use of compact designs.

High temperature low sag (HTLS) conductors are used to increase the thermal capacity of a transmission line up to two times the capacity compared to traditional conductors. HTLS conductors can operate continuously at 150-210oC and in emergency at 180-250oC (depending on the HTLS conductor). ACSR conductors operate continuously at 50-110oC and in emergency conditions at 110-150oC depending on the utility, line, and location. HTLS conductors have decreased sag characteristics of up to 33% compared to traditional ACSR conductors at 100oC and up to 22% at 180oC. In addition to what HTLS has to offer in terms of the thermal rating improvement, the possibility of using HTLS conductors to indirectly reduce tower height and compact the phases to increase the security limit is investigated. In addition, utilizing HTLS conductors to increase span length and decrease the number of transmission towers is investigated. The phase compaction or increased span length is accomplished by utilization of the improved physical sag characteristics of HTLS conductors.

High phase order (HPO) focuses on the ability to increase the power capacity for a given right of way. For example, a six phase line would have a thermal rating of approximately 173%, a security rating of approximately 289%, and the SIL would be approximately 300% of a double circuit three phase line with equal right of way and equal voltage line to line. In addition, this research focuses on algorithm and model development of HPO systems. A study of the impedance of HPO lines is presented. The line impedance matrices for some high phase order configurations are circulant Toeplitz matrices. Properties of circulant matrices are developed for the generalized sequence impedances of HPO lines. A method to calculate the sequence impedances utilizing unique distance parameter algorithms is presented. A novel method to design the sequence impedances to specifications is presented. Utilizing impedance matrices in circulant form, a generalized form of the sequence components transformation matrix is presented. A generalized voltage unbalance factor in discussed for HPO transmission lines. Algorithms to calculate the number of fault types and number of significant fault types for an n-phase system are presented. A discussion is presented on transposition of HPO transmission lines and a generalized fault analysis of a high phase order circuit is presented along with an HPO analysis program.

The work presented has the objective of increasing the use of rights of way for bulk power transmission through the use of innovative transmission technologies. The purpose of this dissertation is to lay down some of the building blocks and to help make the three technologies discussed practical applications in the future.
ContributorsPierre, Brian J (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Shunk, Dan (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150247-Thumbnail Image.png
Description
The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous research on transmission switching with a Direct Current Optimal Power Flow (DCOPF) show significant cost reductions. This thesis on network topology optimization with ACOPF emphasizes the need for additional research in this area. It examines the performance of network topology optimization in an Alternating Current (AC) setting and its impact on various parameters like active power loss and voltages that are ignored in the DC setting. An ACOPF model, with binary variables representing the status of transmission lines incorporated into the formulation, is written in AMPL, a mathematical programming language and this optimization problem is solved using the solver KNITRO. ACOPF is a non-convex, nonlinear optimization problem, making it a very hard problem to solve. The introduction of bi-nary variables makes ACOPF a mixed integer nonlinear programming problem, further increasing the complexity of the optimization problem. An iterative method of opening each transmission line individually before choosing the best solution has been proposed as a purely investigative approach to studying the impact of transmission switching with ACOPF. Economic savings of up to 6% achieved using this approach indicate the potential of this concept. In addition, a heuristic has been proposed to improve the computational efficiency of network topology optimization. This research also makes a comparative analysis between transmission switching in a DC setting and switching in an AC setting. Results presented in this thesis indicate significant economic savings achieved by controlled topology optimization, thereby reconfirming the need for further examination of this idea.
ContributorsPotluri, Tejaswi (Author) / Hedman, Kory (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Arizona State University (Publisher)
Created2011