Matching Items (8)

137671-Thumbnail Image.png

NGExtract 2: MOSFET Parameter Extraction Tool

Description

NGExtract 2 is a complete transistor (MOSFET) parameter extraction solution based upon the original computer program NGExtract by Rahul Shringarpure written in February 2007. NGExtract 2 is written in

NGExtract 2 is a complete transistor (MOSFET) parameter extraction solution based upon the original computer program NGExtract by Rahul Shringarpure written in February 2007. NGExtract 2 is written in Java and based around the circuit simulator NGSpice. The goal of the program is to be used to produce accurate transistor models based around real-world transistor data. The program contains numerous improvements to the original program:
• Completely rewritten with performance and usability in mind
• Cross-Platform vs. Linux Only
• Simple installation procedure vs. compilation and manual library configuration
• Self-contained, single file runtime
• Particle Swarm Optimization routine
NGExtract 2 works by plotting the Ids vs. Vds and Ids vs. Vgs curves of a simulation model and the measured, real-world data. The user can adjust model parameters and re-simulate to attempt to match the curves. The included Particle Swarm Optimization routine attempts to automate this process by iteratively attempting to improve a solution by measuring its sum-squared error against the real-world data that the user has provided.

Contributors

Agent

Created

Date Created
  • 2013-05

152404-Thumbnail Image.png

Detection and analysis of partial discharges in non-uniform field

Description

Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric

Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric and its characteristics can give information about the insulation aging. Most existing test methods cannot identify different kinds of defects. Also, the practical application of PD detection in most existing test methods is restricted by weak PD signals and strong electric field disturbance from surroundings. In order to monitor aging situation in detail, types of PDs are important features to take into account. To classify different types of PDs, pulse sequence analysis (PSA) method is advocated to analyze PDs in the rod-plane model. This method can reflect cumulative effects of PDs, which are always ignored when only measuring PD value. It also shows uniform characteristics when different kinds of detecting system are utilized. Moreover, it does not need calibration. Analysis results from PSA show highly consistent distribution patterns for the same type of PDs and significant differences in the distribution patterns among types of PDs. Furthermore, a new method to detect PD signals using fiber bragg grating (FBG) based PD sensor is studied in this research. By using a piezoelectric ceramic transducer (PZT), small PD signals can be converted to pressure signal and then converted to an optical wavelength signal with FBG. The optical signal is isolated from the electric field; therefore its attenuation and anti-jamming performance will be better than traditional methods. Two sensors, one with resonant frequency of 42.7 kHz and the other 300 kHz, were used to explore the performance of this testing system. However, there were issues with the sensitivity of the sensors of these devices and the results have been communicated with the company. These devices could not give the results at the same level of accuracy as the conventional methods.

Contributors

Agent

Created

Date Created
  • 2013

155140-Thumbnail Image.png

Performance verification of the raptor guard installed in sub transmission systems

Description

In sub transmission systems, many more raptor deaths have been recorded near metal poles rather than wood poles. The metal pole, which is reliable in structure but also grounded, may

In sub transmission systems, many more raptor deaths have been recorded near metal poles rather than wood poles. The metal pole, which is reliable in structure but also grounded, may increase the risk of electrocution when raptors perch on the insulator. This thesis focuses on evaluating the effectiveness of the raptor guard to prevent both debilitating and lethal electrocutions to local wildlife in 69 kV sub transmission systems. First, the two-dimensional (2D) finite difference methods (FDM) were proposed to solve the Poisson and Laplace equations, which describe the electric field. Second, the verification of the FDM algorithm was made based on a parallel-plate capacitor model. Then, the potential and the electric field were simulated by the raptor-insulator model to evaluate the possibility of flashover and leakage current under various conceivable scenarios. Third, several dielectric performance experiments were implemented to gain insight into the physical property of the raptor guard developed by the Salt River Project (SRP) as an example. The proposed initial-tracking-voltage and time-to-track experiments tested the ability of the guard, which is designed to prevent the tracking phenomenon under a contaminated situation such as rain, fog, and snow. A data acquisition also collected the leakage current data for the comparison of maximum raptor tolerance. Furthermore, the puncture voltage of this guard material was performed by the dielectric breakdown voltage experiment in an oil-covered container. With the combination of the model simulation and the experiments in this research, the raptor guard was proven to be practical and beneficial in sub transmission system.

Contributors

Agent

Created

Date Created
  • 2016

151247-Thumbnail Image.png

Exploring six-phase transmission lines for increasing power transfer with limited right of way

Description

In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant

In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase order systems, specifically, six-phase, as a means of increasing power transfer capability, and provides a comparison with conventional three-phase double circuit transmission lines. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria for comparing six-phase and three-phase double circuit lines. The calculations of the criteria were achieved by a program developed using MATLAB. This thesis also presents fault analysis and recommends suitable pro-tection for six-phase transmission lines. This calculation was performed on 4-bus, 9-bus, and 118-bus systems from Powerworld® sample cases. The simulations were performed using Powerworld® and PSCAD®. Line parameters calculations performed in this thesis show that line imped-ances in six-phase lines have a slight difference, compared to three-phase double circuit line. The shunt capacitance of compacted six phase line is twice of the value in the three-phase double circuit line. As a consequence, the compacted six-phase line provides higher surge impedance loadings. The electric and magnetic fields calculations show that, ground level electric fields of the six-phase lines decline more rapidly as the distance from center of the lines increase. The six-phase lines have a better performance on ground level magnetic field. Based on the electric and magnetic field results, right of way re-quirements for the six-phase lines and three-phase double circuit line were calcu-lated. The calculation results of right of way show that six-phase lines provide higher power transfer capability with a given right of way. Results from transmission line fault analysis, and protection study show that, fault types and protection system in six-phase lines are more complicated, com-pared to three-phase double circuit line. To clarify the concern about six-phase line protection, a six-phase line protection system was designed. Appropriate pro-tection settings were determined for a six-phase line in the 4-bus system.

Contributors

Agent

Created

Date Created
  • 2012

Making the case for high temperature low sag (HTLS) overhead transmission line conductors

Description

The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow

The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.

Contributors

Agent

Created

Date Created
  • 2014

150513-Thumbnail Image.png

Modeling flashover of AC outdoor insulators under contaminated conditions with dry band formation and arcing

Description

This paper presents a theoretical model for evaluating flashover performance of insulators under contaminated conditions. The model introduces several new features when compared with existing models such as, the formation

This paper presents a theoretical model for evaluating flashover performance of insulators under contaminated conditions. The model introduces several new features when compared with existing models such as, the formation of dry bands, variations in insulator geometry and surface wettability. The electric field distribution obtained from software for 3-Dimensional models along with form factor are used to determine the dimensions of the dry bands and the onset of arcing. The model draws heavily from experimental measurements of flashover voltage and surface resistance under wet conditions of porcelain and composite insulators. The model illustrates the dominant role played by the insulator shape and housing material on the flashover performance.

Contributors

Agent

Created

Date Created
  • 2012

151013-Thumbnail Image.png

Electric field calculations on dry-type medium voltage current transformers

Description

This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs of MV dry-type epoxy insulated

This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs of MV dry-type epoxy insulated CTs were modeled using 3D field simulation software COULOMB® 9.0. Potential and elec-tric fields were calculated based on boundary element method. Different condi-tions such as dry exterior surface, wet exterior surface and internal voids were considered. The research demonstrates that the presence of internal conductors in CTs results in a less severe surface electric field distribution when compared to outdoor insulators of the same voltage range and type. The high electric field near the exited end triple-point of the CT reduces. This remained true even under wet conditions establishing better outdoor performance of CTs than outdoor insulators which have no internal conductors. The effect of internal conductors on voids within the insulation structure was also established. As a down side, internal voids in CTs experience higher electric field stress than in conductor-less insulators. The work recognizes that internal conducting parts in dry type CTs improves their outdoor performance when compared to electrical equipment without internal conductors.

Contributors

Agent

Created

Date Created
  • 2012

154793-Thumbnail Image.png

Insulator flashover probability investigation based on numerical electric field calculation and random walk theory

Description

Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable

Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator is covered by a pollution layer. Many experiments in the laboratory have been conducted to investigate this issue. Since most experiments are time-consuming and costly, good mathematical models could contribute to predicting the insulator flashover performance as well as guide the experiments. This dissertation proposes a new statistical model to calculate the flashover probability of insulators under different supply voltages and contamination levels. An insulator model with water particles in the air is simulated to analyze the effects of rain and mist on flashover performance in reality. Additionally, insulator radius and number of sheds affect insulator surface resistivity and leakage distance. These two factors are studied to improve the efficiency of insulator design. This dissertation also discusses the impact of insulator surface hydrophobicity on flashover voltage.

Because arc propagation is a stochastic process, an arc could travel on different paths based on the electric field distribution. Some arc paths jump between insulator sheds instead of travelling along the insulator surfaces. The arc jumping could shorten the leakage distance and intensify the electric field. Therefore, the probabilities of arc jumping at different locations of sheds are also calculated in this dissertation.

The new simulation model is based on numerical electric field calculation and random walk theory. The electric field is calculated by the variable-grid finite difference method. The random walk theory from the Monte Carlo Method is utilized to describe the random propagation process of arc growth. This model will permit insulator engineers to design the reasonable geometry of insulators, to reduce the flashover phenomena under a wide range of operating conditions.

Contributors

Agent

Created

Date Created
  • 2016