Matching Items (2)

158373-Thumbnail Image.png

Accelerated Reliability Testing of Fresh and Field-Aged Photovoltaic Modules: Encapsulant Browning and Solder Bond Degradation

Description

The popularity of solar photovoltaic (PV) energy is growing across the globe with more than 500 GW installed in 2018 with a capacity of 640 GW in 2019. Improved PV

The popularity of solar photovoltaic (PV) energy is growing across the globe with more than 500 GW installed in 2018 with a capacity of 640 GW in 2019. Improved PV module reliability minimizes the levelized cost of energy. Studying and accelerating encapsulant browning and solder bond degradation—two of the most commonly observed degradation modes in the field—in a lab requires replicating the stress conditions that induce the same field degradation modes in a controlled accelerated environment to reduce testing time.

Accelerated testing is vital in learning about the reliability of solar PV modules. The unique streamlined approach taken saves time and resources with a statistically significant number of samples being tested in one chamber under multiple experimental stress conditions that closely mirror field conditions that induce encapsulant browning and solder bond degradation. With short circuit current (Isc) and series resistance (Rs) degradation data sets at multiple temperatures, the activation energies (Ea) for encapsulant browning and solder bond degradation was calculated.

Regular degradation was replaced by the wear-out stages of encapsulant browning and solder bond degradation by subjecting two types of field-aged modules to further accelerated testing. For browning, the Ea calculated through the Arrhenius model was 0.37 ± 0.17 eV and 0.71 ± 0.07 eV. For solder bond degradation, the Arrhenius model was used to calculate an Ea of 0.12 ± 0.05 eV for solder with 2wt% Ag and 0.35 ± 0.04 eV for Sn60Pb40 solder.

To study the effect of types of encapsulant, backsheet, and solder on encapsulant browning and solder bond degradation, 9-cut-cell samples maximizing available data points while minimizing resources underwent accelerated tests described for modules. A ring-like browning feature was observed in samples with UV pass EVA above and UV cut EVA below the cells. The backsheet permeability influences the extent of oxygen photo-bleaching. In samples with solder bond degradation, increased bright spots and cell darkening resulted in increased Rs. Combining image processing with fluorescence imaging and electroluminescence imaging would yield great insight into the two degradation modes.

Contributors

Agent

Created

Date Created
  • 2020

154671-Thumbnail Image.png

Artificial phototropism based on a photo-thermo-responsive hydrogel

Description

Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism

Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle.

Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.

Contributors

Agent

Created

Date Created
  • 2016