Matching Items (5)
155922-Thumbnail Image.png
Description
Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for

Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for total dose sensing applications.

The first detector technology is a mechanically flexible metal-chalcogenide glass (ChG)

based system which is fabricated on low cost substrates and are intended as disposable

total dose sensors. Compared to existing commercial technologies, these thin film

radiation sensors are simpler in form and function, and cheaper to produce and operate.

The sensors measure dose through resistance change and are suitable for applications

such as reactor dosimetry, radiation chemistry, and clinical dosimetry. They are ideal for

wearable devices due to the lightweight construction, inherent robustness to resist

breaking when mechanically stressed, and ability to attach to non-flat objects. Moreover,

their performance can be easily controlled by tuning design variables and changing

incorporated materials. The second detector technology is a wireless dosimeter intended

for remote total dose sensing. They are based on a capacitively loaded folded patch

antenna resonating in the range of 3 GHz to 8 GHz for which the load capacitance varies

as a function of total dose. The dosimeter does not need power to operate thus enabling

its use and implementation in the field without requiring a battery for its read-out. As a

result, the dosimeter is suitable for applications such as unattended detection systems

destined for covert monitoring of merchandise crossing borders, where nuclear material

tracking is a concern. The sensitive element can be any device exhibiting a known

variation of capacitance with total ionizing dose. The sensitivity of the dosimeter is

related to the capacitance variation of the radiation sensitive device as well as the high

frequency system used for reading. Both technologies come with the advantage that they

are easy to manufacture with reasonably low cost and sensing can be readily read-out.
ContributorsMahmud, Adnan, Ph.D (Author) / Barnaby, Hugh J. (Thesis advisor) / Kozicki, Michael N (Committee member) / Gonzalez-Velo, Yago (Committee member) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2017
156033-Thumbnail Image.png
Description
A modeling platform for predicting total ionizing dose (TID) and dose rate response of commercial commercial-off-the-shelf (COTS) linear bipolar circuits and technologies is introduced. Tasks associated with the modeling platform involve the development of model to predict the excess current response in a bipolar transistor given inputs of interface (NIT)

A modeling platform for predicting total ionizing dose (TID) and dose rate response of commercial commercial-off-the-shelf (COTS) linear bipolar circuits and technologies is introduced. Tasks associated with the modeling platform involve the development of model to predict the excess current response in a bipolar transistor given inputs of interface (NIT) and oxide defects (NOT) which are caused by ionizing radiation exposure. Existing models that attempt to predict this excess base current response are derived and discussed in detail. An improved model is proposed which modifies the existing model and incorporates the impact of charged interface trap defects on radiation-induced excess base current. The improved accuracy of the new model in predicting excess base current response in lateral PNP (LPNP) is then verified with Technology Computer Aided Design (TCAD) simulations. Finally, experimental data and compared with the improved and existing model calculations.
ContributorsTolleson, Blayne S. (Author) / Barnaby, Hugh J (Thesis advisor) / Gonzalez-Velo, Yago (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017
148195-Thumbnail Image.png
Description

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental

The colossal global counterfeit market and advances in cryptography including quantum computing supremacy have led the drive for a class of anti-counterfeit tags that are physically unclonable. Dendrites, previously considered an undesirable side effect of battery operation, have promise as an extremely versatile version of such tags, with their fundamental nature ensuring that no two dendrites are alike and that they can be read at multiple magnification scales. In this work, we first pursue a simulation for electrochemical dendrites that elucidates fundamental information about their growth mechanism. We then translate these results into physical dendrites and demonstrate methods of producing a hash from these dendrites that is damage-tolerant for real-world verification. Finally, we explore theoretical curiosities that arise from the fractal nature of dendrites. We find that uniquely ramified dendrites, which rely on lower ion mobility and conductive deposition, are particularly amenable to wavelet hashing, and demonstrate that these dendrites have strong commercial potential for securing supply chains at the highest level while maintaining a low price point.

ContributorsSneh, Tal (Author) / Kozicki, Michael (Thesis director) / Gonzalez-Velo, Yago (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
157467-Thumbnail Image.png
Description
ABSTRACT

Programmable metallization cell (PMC) technology uses the mechanism of metal ion transport in solid electrolytes and electrochemical redox reactions to form metallic electrodeposits. When a positive bias is applied from anode to cathode, atoms at the anode are oxidized to ions and dissolve in the solid electrolyte. They

ABSTRACT

Programmable metallization cell (PMC) technology uses the mechanism of metal ion transport in solid electrolytes and electrochemical redox reactions to form metallic electrodeposits. When a positive bias is applied from anode to cathode, atoms at the anode are oxidized to ions and dissolve in the solid electrolyte. They travel to the cathode under the influence of an electric field, where they are reduced to form electrodeposits. These electrodeposits are filamentary in nature and grow in different patterns. Devices that make use of the principle of filament growth have applications in memory, RF switching, and hardware security.

The solid electrolyte under investigation is tungsten trioxide with copper deposited on top. For a standard PMC, these layers are heated in a convection oven to dope the electrolyte. Once the heating process is completed, electrodes are deposited on top of the electrolyte and biased to grow the filaments. What is investigated is the rate of dendritic growth to applied field on the PMC and the composition of the electrolyte. Also investigated are modified three-terminal PMC capacitance change devices. These devices have a buried sensing electrode that senses the increasing capacitance as the filaments grow and increase the upper electrode area.

The rate of dendritic growth in the tungsten trioxide and copper electrolyte of different chemistries and applied field to the PMC devices is the important parameter. The rate of dendritic growth is related to the change of capacitance. Through sensing the change in capacitance over time the modified PMC device will function as an odometer device that can be attached to chips. The attachment of these devices to chips, help in preventing illegal recycling of old chips by marking those chips as old. This will prevent would-be attackers from inserting modified chips in systems that will enable them to by-pass any software security precautions.
ContributorsKrishnan, Anand (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh J (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2019
158879-Thumbnail Image.png
Description
Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Committee member) / Newman, Nathan (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2020