Matching Items (2)
158834-Thumbnail Image.png
Description
One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g.,

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g., using GPS) and communicate with one another, have information about the payload's geometric and dynamical properties, and follow predefined robot and/or payload trajectories. However, these approaches cannot be applied in uncertain environments where robots do not have reliable communication and GPS and lack information about the payload. These conditions characterize a variety of applications, including construction, mining, assembly in space and underwater, search-and-rescue, and disaster response.
Toward this end, this thesis presents decentralized control strategies for collective transport by robots that regulate their actions using only their local sensor measurements and minimal prior information. These strategies can be implemented on robots that have limited or absent localization capabilities, do not explicitly exchange information, and are not assigned predefined trajectories. The controllers are developed for collective transport over planar surfaces, but can be extended to three-dimensional environments.

This thesis addresses the above problem for two control objectives. First, decentralized controllers are proposed for velocity control of collective transport, in which the robots must transport a payload at a constant velocity through an unbounded domain that may contain strictly convex obstacles. The robots are provided only with the target transport velocity, and they do not have global localization or prior information about any obstacles in the environment. Second, decentralized controllers are proposed for position control of collective transport, in which the robots must transport a payload to a target position through a bounded or unbounded domain that may contain convex obstacles. The robots are subject to the same constraints as in the velocity control scenario, except that they are assumed to have global localization. Theoretical guarantees for successful execution of the task are derived using techniques from nonlinear control theory, and it is shown through simulations and physical robot experiments that the transport objectives are achieved with the proposed controllers.
ContributorsFarivarnejad, Hamed (Author) / Berman, Spring (Thesis advisor) / Mignolet, Marc (Committee member) / Tsakalis, Konstantinos (Committee member) / Artemiadis, Panagiotis (Committee member) / Gil, Stephanie (Committee member) / Arizona State University (Publisher)
Created2020
Description
The world is filled with systems of entities that collaborate in motion, both natural and engineered. These cooperative distributed systems are capable of sophisticated emergent behavior arising from the comparatively simple interactions of their members. A model system for emergent collective behavior is programmable matter, a physical substance capable of

The world is filled with systems of entities that collaborate in motion, both natural and engineered. These cooperative distributed systems are capable of sophisticated emergent behavior arising from the comparatively simple interactions of their members. A model system for emergent collective behavior is programmable matter, a physical substance capable of autonomously changing its properties in response to user input or environmental stimuli. This dissertation studies distributed and stochastic algorithms that control the local behaviors of individual modules of programmable matter to induce complex collective behavior at the macroscale. It consists of four parts. In the first, the canonical amoebot model of programmable matter is proposed. A key goal of this model is to bring algorithmic theory closer to the physical realities of programmable matter hardware, especially with respect to concurrency and energy distribution. Two protocols are presented that together extend sequential, energy-agnostic algorithms to the more realistic concurrent, energy-constrained setting without sacrificing correctness, assuming the original algorithms satisfy certain conventions. In the second part, stateful distributed algorithms using amoebot memory and communication are presented for leader election, object coating, convex hull formation, and hexagon formation. The first three algorithms are proven to have linear runtimes when assuming a simplified sequential setting. The final algorithm for hexagon formation is instead proven to be correct under unfair asynchronous adversarial activation, the most general of all adversarial activation models. In the third part, distributed algorithms are combined with ideas from statistical physics and Markov chain design to replace algorithm reliance on memory and communication with biased random decisions, gaining inherent self-stabilizing and fault-tolerant properties. Using this stochastic approach, algorithms for compression, shortcut bridging, and separation are designed and analyzed. Finally, a two-pronged approach to "programming" physical ensembles is presented. This approach leverages the physics of local interactions to pair theoretical abstractions of self-organizing particle systems with experimental robot systems of active granular matter that intentionally lack digital computation and communication. By physically embodying the salient features of an algorithm in robot design, the algorithm's theoretical analysis can predict the robot ensemble's behavior. This approach is applied to phototaxing, aggregation, dispersion, and object transport.
ContributorsDaymude, Joshua (Author) / Richa, Andréa W (Thesis advisor) / Scheideler, Christian (Committee member) / Randall, Dana (Committee member) / Pavlic, Theodore (Committee member) / Gil, Stephanie (Committee member) / Arizona State University (Publisher)
Created2021