Matching Items (3)
128291-Thumbnail Image.png
Description

An unconventional iron superconductor, SmO0.7F0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La0.67Sr0.33MnO3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can

An unconventional iron superconductor, SmO0.7F0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La0.67Sr0.33MnO3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can be measured up to 52 K, a temperature range, which is several times wider than that using a typical conventional superconductor. The result excludes spin-parallel triplet pairing in the iron superconductor.

ContributorsGifford, Jessica (Author) / Chen, B. B. (Author) / Zhang, Ji (Author) / Zhao, Gejian (Author) / Kim, Dongrin (Author) / Li, Bochao (Author) / Wu, D. (Author) / Chen, Tingyong (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-21
128269-Thumbnail Image.png
Description

Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably

Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

ContributorsVahidi, Mahmoud (Author) / Gifford, Jessica (Author) / Zhang, Shengke (Author) / Krishnamurthy, S. (Author) / Yu, Z. G. (Author) / Lei, Yu (Author) / Huang, Mengchu (Author) / Youngbull, Cody (Author) / Chen, Tingyong (Author) / Newman, Nathan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-15
128060-Thumbnail Image.png
Description

The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure

The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

ContributorsGifford, Jessica (Author) / Zhao, Gejian (Author) / Li, Bochao (Author) / Tracy, Brian (Author) / Zhang, Ji (Author) / Kim, Dongrin (Author) / Chen, Tingyong (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-23