Matching Items (19)

128203-Thumbnail Image.png

Regional-scale transport of air pollutants: impacts of Southern California emissions on Phoenix ground-level ozone concentrations

Description

In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone

In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O[superscript 3]]) for a pair of recent exceedance episodes. First, WRF-Chem control simulations, based on the US Environmental Protection Agency (EPA) 2005 National Emissions Inventories (NEI05), are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NO[superscript X], and wind fields, the control simulations reproduce observed variability well. Simulated [O[superscript 3]] are comparable with the previous studies in this region. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedances within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for Biogenic emissions and lateral boundary inflow (BILB). Based on the USEPA NEI05, results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O[superscript 3]] in Phoenix. SoCal contributions to DMA8 [O[superscript 3]] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10–30 % relative to Control experiments). [O[superscript 3]] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BILB contributions to DMA8 [O[superscript 3]] in Phoenix also play a key role.

Contributors

Agent

Created

Date Created
  • 2015-08-21

Assessing Summertime Urban Air Conditioning Consumption in a Semiarid Environment

Description

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ~53% of diurnally averaged total electric demand, ranging from ~35% during early morning to ~65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

Contributors

Agent

Created

Date Created
  • 2013-08-29

Challenges Associated with Projecting Urbanization-Induced Heat-Related Mortality

Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

Contributors

Created

Date Created
  • 2014-04-28

Urban Adaptation Can Roll Back Warming of Emerging Megapolitan Regions

Description

Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from

Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.

Contributors

Created

Date Created
  • 2014-02-25

Prioritizing Urban Sustainability Solutions: Coordinated Approaches Must Incorporate Scale-Dependent Built Environment Induced Effects

Description

Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban

Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced solutions within the broader umbrella of urban sustainability outcomes, thereby accounting for fundamental physical principles. Contemporary and future design of settlements demands cooperative participation between planners, architects, and relevant stakeholders, with the urban and global climate community, which recognizes the complexity of the physical systems involved and is ideally fit to quantitatively examine the viability of proposed solutions. Such participatory efforts can aid the development of locally sensible approaches by integrating across the socioeconomic and climatic continuum, therefore providing opportunities facilitating comprehensive solutions that maximize benefits and limit unintended consequences.

Contributors

Agent

Created

Date Created
  • 2015-06-09

Seasonal Hydroclimatic Impacts of Sun Corridor Expansion

Description

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona's Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C).

Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for hydrologic impacts in addition to continued focus on mean temperature effects.

Contributors

Agent

Created

Date Created
  • 2012-09-07

An Alternative Explanation of the Semiarid Urban Area “Oasis Effect”

Description

This research evaluates the climatic summertime representation of the diurnal cycle of near-surface temperature using the Weather Research and Forecasting System (WRF) over the rapidly urbanizing and water-vulnerable Phoenix metropolitan

This research evaluates the climatic summertime representation of the diurnal cycle of near-surface temperature using the Weather Research and Forecasting System (WRF) over the rapidly urbanizing and water-vulnerable Phoenix metropolitan area. A suite of monthly, high-resolution (2 km grid spacing) simulations are conducted during the month of July with both a contemporary landscape and a hypothetical presettlement scenario. WRF demonstrates excellent agreement in the representation of the daily to monthly diurnal cycle of near-surface temperatures, including the accurate simulation of maximum daytime temperature timing. Thermal sensitivity to anthropogenic land use and land cover change (LULCC), assessed via replacement of the modern-day landscape with natural shrubland, is small on the regional scale. The WRF-simulated characterization of the diurnal cycle, supported by previous observational analyses, illustrates two distinct and opposing impacts on the urbanized diurnal cycle of the Phoenix metro area, with evening and nighttime warming partially offset by daytime cooling. The simulated nighttime urban heat island (UHI) over this semiarid urban complex is explained by well-known mechanisms (slow release of heat from within the urban fabric stored during daytime and increased emission of longwave radiation from the urban canopy toward the surface). During daylight hours, the limited vegetation and dry semidesert region surrounding metro Phoenix warms at greater rates than the urban complex. Although prior work has suggested that daytime temperatures are lower within the urban complex owing to the addition of residential and agricultural irrigation (i.e., “oasis effect”) we show that modification of Phoenix's surrounding environment to a biome more representative of temperate regions eliminates the daytime urban cooling. Our results indicate that surrounding environmental conditions, including land cover and availability of soil moisture, play a principal role in establishing the nature and evolution of the diurnal cycle of near-surface temperature for the greater Phoenix, Arizona, metropolitan area relative to its rural and undeveloped counterpart.

Contributors

Agent

Created

Date Created
  • 2011-12-11

137189-Thumbnail Image.png

Developing Anthropogenic Heating Profiles for Urban Areas across the United States

Description

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation modeling systems require diurnal anthropogenic heating profiles. Development of diurnal cycle profiles of anthropogenic heating will help the modeling community as there is currently no database for anthropogenic heating profiles for cities across the United States. With more accurate anthropogenic heating profiles, climate models will be better able to show how humans directly impact the urban climate. This research attempts to create anthropogenic heating profiles for 61 cities in the United States. The method used climate, electricity, natural gas, and transportation data to develop anthropogenic heating profiles for each state. To develop anthropogenic heating profiles, profiles are developed for buildings, transportation, and human metabolism using the most recently available data. Since utilities are reluctant to release data, the building energy profile is developed using statewide electricity by creating a linear regression between the climate and electricity usage. A similar method is used to determine the contribution of natural gas consumption. These profiles are developed for each month of the year, so annual changes in anthropogenic heating can be seen. These profiles can then be put into climate models to enable more accurate urban climate modeling.

Contributors

Created

Date Created
  • 2014-05

129252-Thumbnail Image.png

Multiscale Modeling and Evaluation of Urban Surface Energy Balance in the Phoenix Metropolitan Area

Description

Physical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of

Physical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of input data, (iii) model resolution, and (iv) flux observation resolution. Observations from a new 22.1-m flux tower situated within a residential neighborhood in Phoenix, Arizona, are utilized to evaluate the ability of the urbanized WRF to resolve finescale surface energy balance (SEB) when using the urban classes derived from the 30-m-resolution National Land Cover Database. Modeled SEB response to a large seasonal variation of net radiation forcing was tested during synoptically quiescent periods of high pressure in winter 2011 and premonsoon summer 2012. Results are presented from simulations employing five nested domains down to 333-m horizontal resolution. A comparative analysis of model cases testing parameterization of physical processes was done using four configurations of urban parameterization for the bulk urban scheme versus three representations with the Urban Canopy Model (UCM) scheme, and also for two types of planetary boundary layer parameterization: the local Mellor–Yamada–Janjić scheme and the nonlocal Yonsei University scheme. Diurnal variation in SEB constituent fluxes is examined in relation to surface-layer stability and modeled diagnostic variables. Improvement is found when adapting UCM for Phoenix with reduced errors in the SEB components. Finer model resolution is seen to have insignificant (<1 standard deviation) influence on mean absolute percent difference of 30-min diurnal mean SEB terms.

Contributors

Created

Date Created
  • 2015-06-11

158325-Thumbnail Image.png

Patch to Landscape and Back Again: Three Case Studies of Land System Architecture Change and Environmental Consequences from the Local to Global Scale

Description

Humans have modified land systems for centuries in pursuit of a wide range of social and ecological benefits. Recent decades have seen an increase in the magnitude and scale of

Humans have modified land systems for centuries in pursuit of a wide range of social and ecological benefits. Recent decades have seen an increase in the magnitude and scale of land system modification (e.g., the Anthropocene) but also a growing recognition and interest in generating land systems that balance environmental and human well-being. This dissertation focused on three case studies operating at distinctive spatial scales in which broad socio-economic or political-institutional drivers affected land systems, with consequences for the environmental conditions of that system. Employing a land system architecture (LSA) framework and using landscape metrics to quantify landscape composition and configuration from satellite imagery, each case linked these drivers to changes in LSA and environmental outcomes.

The first paper of this dissertation found that divergent design intentions lead to unique trajectories for LSA, the urban heat island effect, and bird community at two urban riparian sites in the Phoenix metropolitan area. The second paper examined institutional shifts that occurred during Cuba’s “special period in time of peace” and found that the resulting land tenure changes both modified and maintained the LSA of the country, changing cropland but preserving forest land. The third paper found that globalized forces may be contributing to the homogenizing urban form of large, populous cities in China, India, and the United States—especially for the ten largest cities in each country—with implications for surface urban heat island intensity. Expanding knowledge on social drivers of land system and environmental change provides insights on designing landscapes that optimize for a range of social and ecological trade-offs.

Contributors

Agent

Created

Date Created
  • 2020