Matching Items (3)
Filtering by

Clear all filters

129420-Thumbnail Image.png
Description

Detecting edges in images from a finite sampling of Fourier data is important in a variety of applications. For example, internal edge information can be used to identify tissue boundaries of the brain in a magnetic resonance imaging (MRI) scan, which is an essential part of clinical diagnosis. Likewise, it

Detecting edges in images from a finite sampling of Fourier data is important in a variety of applications. For example, internal edge information can be used to identify tissue boundaries of the brain in a magnetic resonance imaging (MRI) scan, which is an essential part of clinical diagnosis. Likewise, it can also be used to identify targets from synthetic aperture radar data. Edge information is also critical in determining regions of smoothness so that high resolution reconstruction algorithms, i.e. those that do not “smear over” the internal boundaries of an image, can be applied. In some applications, such as MRI, the sampling patterns may be designed to oversample the low frequency while more sparsely sampling the high frequency modes. This type of non-uniform sampling creates additional difficulties in processing the image. In particular, there is no fast reconstruction algorithm, since the FFT is not applicable. However, interpolating such highly non-uniform Fourier data to the uniform coefficients (so that the FFT can be employed) may introduce large errors in the high frequency modes, which is especially problematic for edge detection. Convolutional gridding, also referred to as the non-uniform FFT, is a forward method that uses a convolution process to obtain uniform Fourier data so that the FFT can be directly applied to recover the underlying image. Carefully chosen parameters ensure that the algorithm retains accuracy in the high frequency coefficients. Similarly, the convolutional gridding edge detection algorithm developed in this paper provides an efficient and robust way to calculate edges. We demonstrate our technique in one and two dimensional examples.

ContributorsMartinez, Adam (Author) / Gelb, Anne (Author) / Gutierrez, Alexander (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129679-Thumbnail Image.png
Description

This investigation seeks to establish the practicality of numerical frame approximations. Specifically, it develops a new method to approximate the inverse frame operator and analyzes its convergence properties. It is established that sampling with well-localized frames improves both the accuracy of the numerical frame approximation as well as the robustness

This investigation seeks to establish the practicality of numerical frame approximations. Specifically, it develops a new method to approximate the inverse frame operator and analyzes its convergence properties. It is established that sampling with well-localized frames improves both the accuracy of the numerical frame approximation as well as the robustness and efficiency of the (finite) frame operator inversion. Moreover, in applications such as magnetic resonance imaging, where the given data often may not constitute a well-localized frame, a technique is devised to project the corresponding frame data onto a more suitable frame. As a result, the target function may be approximated as a finite expansion with its asymptotic convergence solely dependent on its smoothness. Numerical examples are provided.

ContributorsSong, Guohui (Author) / Gelb, Anne (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-08-13
129587-Thumbnail Image.png
Description

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various investigations have led to improvements in accuracy, efficiency, and robustness of the NFFT, not much attention has been paid to the fundamental analysis of the scheme, and in particular its convergence properties. This paper analyzes the convergence of the NFFT by casting it as a Fourier frame approximation. In so doing, we are able to design parameters for the method that satisfy conditions for numerical convergence. Our so-called frame theoretic convolutional gridding algorithm can also be applied to detect features (such as edges) from nonuniform Fourier samples of piecewise smooth functions.

ContributorsGelb, Anne (Author) / Song, Guohui (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30