Matching Items (14)

129545-Thumbnail Image.png

Ectopic Expression of Arabidopsis H+-Pyrophosphatase AVP1 Enhances Drought Resistance in Bottle Gourd (Lagenaria Siceraria Standl.)

Description

Bottle gourd (Lagenaria siceraria Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the ArabidopsisAVP1

Bottle gourd (Lagenaria siceraria Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the ArabidopsisAVP1 gene that encodes a vacuolar H+-pyrophosphatase. The drought resistance of AVP1-expressing and wild-type plants was assessed by growing plants under drought conditions. After 12 days of water deprivation, both AVP1-expressing and wild-type plants demonstrated reduced growth. After 10 days of re-watering, wild-type plants showed minimal growth while the AVP1-expressing plants resumed rapid growth. Further, AVP1-expressing plants displayed longer primary roots and more robust root systems than wild-type plants.

Contributors

Agent

Created

Date Created
2014-09-01

127940-Thumbnail Image.png

Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1)

Description

Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of

Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic. Using computer modeling several putative phosphorylation, ubiquitination and sumoylation target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory sites will direct future research that specifically addresses the partitioning and transport characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular distribution will facilitate rationale strategies for further genetic improvements in crop productivity.

Contributors

Created

Date Created
2017-09-12

129580-Thumbnail Image.png

Over-Expression of the Arabidopsis Proton-Pyrophosphatase AVP1 Enhances Transplant Survival, Root Mass, and Fruit Development Under Limiting Phosphorus Conditions

Description

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

Contributors

Agent

Created

Date Created
2014-07-01

136838-Thumbnail Image.png

Phenotypes associated with over-expression of type I H+-PPases: Is there a common mechanism?

Description

Type I H+-PPase encoding genes, such as AVP1 (Arabidopsis thaliana), TsVP (Thellungiella halophilla), TaVP,( Triticum aestivum), and OVP1 (Oryza sativa) are highly conserved and.traditionally known to operate as vacuolar proton translocating pyrophosphatases. It is worth mentioning that Rocha-Facanha and de

Type I H+-PPase encoding genes, such as AVP1 (Arabidopsis thaliana), TsVP (Thellungiella halophilla), TaVP,( Triticum aestivum), and OVP1 (Oryza sativa) are highly conserved and.traditionally known to operate as vacuolar proton translocating pyrophosphatases. It is worth mentioning that Rocha-Facanha and de Meis presented in vitro evidence with tonoplast fractions of maize coleoptiles and seeds consistent with the reverse function of the H+-PPase (1998). These authors suggested that given the appropriate thermodynamic conditions in vivo, the H+-PPase could operate as a system of energy conservation with a role in the maintenance of cytosolic PPi levels. Further evidence in support for a PPi-synthase activity of plant H+-PPases came from work done on tonoplasts from mature oranges where PPi synthesis was demonstrated when a ΔpH of 3 units was imposed (Marsh et al. 2000).

Futher research has shown that transgenics overexpressing type I H+-PPases develop more root and shoot biomass, and have enhanced rhizosphere acidification capacity than wild types. The increased root biomass suggests that previous reports describing the response of these plants to water scarcity as drought tolerance are incomplete. Larger root systems indicate that an important component of the response is drought resistance. The enhanced rhizosphere acidification capacity has also been associated with an increase in nutrient use efficiency, conferring a growth advantage under nitrogen and phosphorous deficient conditions.
While a vacuolar localized H+-PPase easily explains the salt tolerant phenotypes, it does little to provide a mechanism for an increase in root and shoot biomass and/or an augmented rhizosphere acidification capacity. Several groups have argued that higher levels and transport of the growth hormone auxin could be responsible for the above phenotypes. An alternative model focusing on the function of a plasma membrane bound H+-PPase in sieve elements and companion cells links these phenotypes with enhanced phloem sucrose loading and transport.
The following paper reviews publications in which the H+-PPase overexpression technology has been used since 2006 in an attempt to identify cues that could help us test the compatibility of the the proposed models with the actual data.

Contributors

Agent

Created

Date Created
2014-05

136816-Thumbnail Image.png

Characterization of Transgenic Arabidopsis thaliana Overexpressing a Type I H+ Pyrophosphatase and the Phloem Lipid-Associated Family Protein

Description

Overexpression of AVP1 (Arabidopsis vacuolar pyrophosphatase), a type I H+ pyrophosphatase, results in greater biomass, possibly due to a function in sucrose transport within the phloem. Overexpression of the phloem lipid-associated family protein (PLAFP) was shown to increase the number

Overexpression of AVP1 (Arabidopsis vacuolar pyrophosphatase), a type I H+ pyrophosphatase, results in greater biomass, possibly due to a function in sucrose transport within the phloem. Overexpression of the phloem lipid-associated family protein (PLAFP) was shown to increase the number of vascular bundles in Arabidopsis. Could these two phenotypes complement one another additively? In this work, double mutants overexpressing both AVP1 and PLAFP were characterized. These double mutants have enhanced biomass, greater leaf area, and a larger number of vascular bundles than the single mutant lines. Overexpression of PLAFP does not result in any increase in rhizosphere acidification capacity.

Contributors

Agent

Created

Date Created
2014-05

137488-Thumbnail Image.png

Effects of Nitrogen Deficiency on 74 Breeding Lettuce Lines Derived from the Cross Parade vs. Pavane under Different Illumination Conditions

Description

The manner in which plants are able to acquire plant nitrate (NO3-) varies depending on a combination of distinct processes between "root high-and low-affinity NO-3 transporters and the proton gradient that is generated by the plasma membrane H+-ATPase" (Paez-Valencia et

The manner in which plants are able to acquire plant nitrate (NO3-) varies depending on a combination of distinct processes between "root high-and low-affinity NO-3 transporters and the proton gradient that is generated by the plasma membrane H+-ATPase" (Paez-Valencia et al, 2013). In this study we analyzed the response to limiting nitrate (0.5 mM) of seventy-four breeding lettuce (Lactuca sativa) lines derived from the cross Parade vs. Pavane. Parade had an enhanced root acidification capacity when grown under Nitrate limitation in comparison to Pavane, which had a poor root acidification capacity. Two successive experiments were conducted under distinct environmental conditions to evaluate the performance of the different breeding lines based on their ability to grow under nitrogen limitation as an indirect measurement of their ability to take up nitrate. Specific parameters were established in order to properly classify strong and weak breading lines based on the following characterizations: 1) Average fresh shoots and roots weights; 2) Color of leaves (green vs. yellow); and 3) Root acidification capacity. In essence, the measurement of these parameters is would allow for the identification of breeding lines that demonstrated enhanced performance under Nitrate limitation in order to observe if their performance correlated with root acidification capacity. The breeding line's biomass, indicated by the average fresh shoots and roots weights, determined the plant's ability to uptake Nitrogen; whereas, large biomass values indicated Nitrogen uptake, low values indicated a low Nitrogen uptake (Javadiyan, 2008). To determine Nitrogen nutrition, the colors of the plants' leaves were observed throughout the duration of the study; a green color demonstrated appropriate Nitrogen nutrition, whereas as a yellow color identified Nitrogen deficiency (Yang, 2003). In addition to the nutrients that composed the media in the agar plates, a pH indicator (Bromocresol Purple Dye) was utilized to monitor root acidification; the purple indicator transformed into a yellow color upon the occurrence of acidification. In both experiments, a direct correlation between the root acidification capacity and the biomass of each breeding line could not be determined. Strong breeding lines were identified when they demonstrated large biomass measurements, which were obtained from the average fresh shoots and roots, and also a proper nitrogen nutrition status, which was shown through their green leaf phenotypic characteristics. These two characterizations were significantly prevalent in four breeding lines (B9, B17, C1, and C21), which on average outperformed the parental lines (Controls: P12 and P13).

Contributors

Agent

Created

Date Created
2013-05

137794-Thumbnail Image.png

Differential Nucleotide Diversity and Linkage Disequilibrium Levels at Homoelogous Loci Associated with Fiber Traits in Cotton (G. barbadense L.)

Description

The modern tetraploid species Gossypium barbadense L. (AD2) traces its origins to an allopolyploidy event between diploid progenitors G. raimondii (DT Genome, Americas) and G. herbaceum (AT Genome, Asia/Africa). In this study, nine fiber-related genes consisting of seven MYB transcription

The modern tetraploid species Gossypium barbadense L. (AD2) traces its origins to an allopolyploidy event between diploid progenitors G. raimondii (DT Genome, Americas) and G. herbaceum (AT Genome, Asia/Africa). In this study, nine fiber-related genes consisting of seven MYB transcription factors, a cellulose synthase homolog, and a tubulin homolog were resequenced across 54 G. barbadense lines spanning the wild-to-domesticated spectrum. Tests for nucleotide diversity (π), linkage disequilibrium (LD), and Tajima’s D were performed to examine the extent to which evolutionary forces have acted on these nine loci in G. barbadense. Results indicated that the AT-genome loci had significantly higher levels of diversity and lower levels of LD relative to homoelogous loci from the DT-genome. Additionally, all loci showed signatures of a population size expansion after a bottleneck or selective sweep and/or purifying selection. As previously shown for a sister tetraploid taxa (G. hirsutum), gene conversion resulting from a DT-genome allele invasion into the AT-genome likely explains the higher levels of diversity and lower levels of intragenic LD in the AT-genome. Given the relatively very low level of genetic diversity in elite lines, introduction of novel alleles from wild, land race, or obsolete lines into modern Pima cotton breeding programs is needed to expand the narrow gene pool of G. barbadense for continual yield improvements.

Contributors

Agent

Created

Date Created
2013-05

149725-Thumbnail Image.png

Molecular chaperones of the endoplasmic reticulum promote hepatitis C virus E2 protein production in plants

Description

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.

Contributors

Agent

Created

Date Created
2011

132107-Thumbnail Image.png

The Effects of 2,3-butanediol on Arabidopsis and Various Crops

Description

Climate change has the potential to reduce the amount of land that is suitable for crop growth. Such changes may cause food shortages, which would most likely disproportionately affect the poorest regions of the world. While GMO crops showed potential

Climate change has the potential to reduce the amount of land that is suitable for crop growth. Such changes may cause food shortages, which would most likely disproportionately affect the poorest regions of the world. While GMO crops showed potential to increase crop yield and agricultural efficiency, significant public pushback has led to a search for alternative methods to generate similar results. Compounds produced by bacteria, such as 2,3-butanediol, offer a potential way to change the phenotypes of plants without the deliberate genomic changes involved in the development of GMOs which are often the subject of great controversy. These compounds influence how plants grow and function. Through precise application, the compounds could be used to improve crop yield and stress tolerance. While these effects are not completely understood, they may be due to changes in transcription and translation of certain proteins, the microbiome surrounding the plants and its interactions with the compounds, or other unknown factors. The compound 2,3-butanediol appears to increase biomass, lead to larger root systems and more root hairs, and increase germination rates in a variety of plants. All these traits are favorable for producing higher yields and enduring stress conditions. The phenotypes induced by this compound are similar to plants engineered to over express a type I proton pyrophosphatase. Plants treated with 2,3-butanediol offer a potential option to achieve the benefits of GMO crops without the attached social stigma.

Contributors

Agent

Created

Date Created
2019-12

127965-Thumbnail Image.png

Alternate Modes of Photosynthate Transport in the Alternating Generations of Physcomitrella Patens

Description

Physcomitrella patens has emerged as a model moss system to investigate the evolution of various plant characters in early land plant lineages. Yet, there is merely a disparate body of ultrastructural and physiological evidence from other mosses to draw inferences

Physcomitrella patens has emerged as a model moss system to investigate the evolution of various plant characters in early land plant lineages. Yet, there is merely a disparate body of ultrastructural and physiological evidence from other mosses to draw inferences about the modes of photosynthate transport in the alternating generations of Physcomitrella. We performed a series of ultrastructural, fluorescent tracing, physiological, and immunohistochemical experiments to elucidate a coherent model of photosynthate transport in this moss. Our ultrastructural observations revealed that Physcomitrella is an endohydric moss with water-conducting and putative food-conducting cells in the gametophytic stem and leaves. Movement of fluorescent tracer 5(6)-carboxyfluorescein diacetate revealed that the mode of transport in the gametophytic generation is symplasmic and is mediated by plasmodesmata, while there is a diffusion barrier composed of transfer cells that separates the photoautotrophic gametophyte from the nutritionally dependent heterotrophic sporophyte.

We posited that, analogous to what is found in apoplasmically phloem loading higher plants, the primary photosynthate sucrose, is actively imported into the transfer cells by sucrose/H[superscript +] symporters (SUTs) that are, in turn, powered by P-type ATPases, and that the transfer cells harbor an ATP-conserving Sucrose Synthase (SUS) pathway. Supporting our hypothesis was the finding that a protonophore (2,4-dinitrophenol) and a SUT-specific inhibitor (diethyl pyrocarbonate) reduced the uptake of radiolabeled sucrose into the sporangia. In situ immunolocalization of P-type ATPase, Sucrose Synthase, and Proton Pyrophosphatase – all key components of the SUS pathway – showed that these proteins were prominently localized in the transfer cells, providing further evidence consistent with our argument.

Contributors

Agent

Created

Date Created
2017-11-13