Matching Items (27)
152655-Thumbnail Image.png
Description
Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into

Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd < 50 mV) were found when using density functional theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed thermal relaxation. These results are relevant for both advancing the knowledge about natural photosynthesis and for the future design of new molecules for WSDSPETCs.
ContributorsMéndez-Hernández, Dalvin D (Author) / Moore, Ana L (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, Devens J. (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
151158-Thumbnail Image.png
Description
Molecular dynamics simulations were used to study properties of water at the interface with nanometer-size solutes. We simulated nonpolar attractive Kihara cavities given by a Lennard-Jones potential shifted by a core radius. The dipolar response of the hydration layer to a uniform electric field substantially exceeds that of the bulk.

Molecular dynamics simulations were used to study properties of water at the interface with nanometer-size solutes. We simulated nonpolar attractive Kihara cavities given by a Lennard-Jones potential shifted by a core radius. The dipolar response of the hydration layer to a uniform electric field substantially exceeds that of the bulk. For strongly attractive solutes, the collective dynamics of the hydration layer become slow compared to bulk water, as the solute size is increased. The statistics of electric field fluctuations at the solute center are Gaussian and tend toward the dielectric continuum limit with increasing solute size. A dipolar probe placed at the center of the solute is sensitive neither to the polarity excess nor to the slowed dynamics of the hydration layer. A point dipole was introduced close to the solute-water interface to further study the statistics of electric field fluctuations generated by the water. For small dipole magnitudes, the free energy surface is single-welled, with approximately Gaussian statistics. When the dipole is increased, the free energy surface becomes double-welled, before landing in an excited state, characterized again by a single-welled surface. The intermediate region is fairly broad and is characterized by electrostatic fluctuations significantly in excess of the prediction of linear response. We simulated a solute having the geometry of C180 fullerene, with dipoles introduced on each carbon. For small dipole moments, the solvent response follows the results seen for a single dipole; but for larger dipole magnitudes, the fluctuations of the solute-solvent energy pass through a second maximum. The juxtaposition of the two transitions leads to an approximately cubic scaling of the chemical potential with the dipole strengh. Umbrella sampling techniques were used to generate free energy surfaces of the electric potential fluctuations at the heme iron in Cytochrome B562. The results were unfortunately inconclusive, as the ionic background was not effectively represented in the finite-size system.
ContributorsFriesen, Allan Dwayne (Author) / Matyushov, Dmitry V (Thesis advisor) / Angell, C Austen (Thesis advisor) / Beckstein, Oliver (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2012
154122-Thumbnail Image.png
Description
Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible

Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible with heat sources. An intriguing alternative to solid-state thermoelectric devices is thermogalvanic cells, which include a generally liquid electrolyte that permits the transport of ions. Thermogalvanic cells have long been known in the electrochemistry community, but have not received much attention from the thermal transport community. This is surprising given that their performance is highly dependent on controlling both thermal and mass (ionic) transport. This research will focus on a research project, which is an interdisciplinary collaboration between mechanical engineering (i.e. thermal transport) and chemistry, and is a largely experimental effort aimed at improving fundamental understanding of thermogalvanic systems. The first part will discuss how a simple utilization of natural convection within the cell doubles the maximum power output of the cell. In the second part of the research, some of the results from the previous part will be applied in a feasibility study of incorporating thermogalvanic waste heat recovery systems into automobiles. Finally, a new approach to enhance Seebeck coefficient by tuning the configurational entropy of a mixed-ligand complex formation of copper sulfate aqueous electrolytes will be presented. Ultimately, a summary of these results as well as possible future work that can be formed from these efforts is discussed.
ContributorsGunawan, Andrey (Author) / Phelan, Patrick E (Thesis advisor) / Buttry, Daniel A (Committee member) / Mujica, Vladimiro (Committee member) / Chan, Candace K. (Committee member) / Wang, Robert Y (Committee member) / Arizona State University (Publisher)
Created2015
156550-Thumbnail Image.png
Description
Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray laser pulses produced by an X-ray free electron laser to collect near-instantaneous data on the crystal. A full data set can be collected by merging a sufficient number of these patterns together and multiple data sets can be collected at different points along the reaction pathway by manipulating the delay time between reaction initiation and the probing X-rays. In this way, these ‘snapshot’ structures can be viewed in series to make a molecular movie, allowing for atomic visualization of a molecule in action and, thereby, a structural basis for the mechanism and function of a given biomacromolecule.

This dissertation presents results towards this end, including the successful implementations of the first diffusive mixing chemoactivated reactions and ultrafast dynamics in the femtosecond regime. The primary focus is on photosynthetic membrane proteins and enzymatic drug targets, in pursuit of strategies for sustainable energy and medical advancement by gaining understanding of the structure-function relationships evolved in nature. In particular, photosystem I, photosystem II, the complex of photosystem I and ferredoxin, and 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase are reported on, from purification and isolation, to crystallogenesis, to experimental design and data collection and subsequent interpretation of results and novel insights gained.
ContributorsCoe, Jesse (Author) / Fromme, Petra (Thesis advisor) / Sayres, Scott (Thesis advisor) / Mujica, Vladimiro (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
137195-Thumbnail Image.png
Description
The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni. Investigation of these complexes by 1H NMR spectroscopy revealed diimine coordination but also the absence of amine arm coordination. Using

The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni. Investigation of these complexes by 1H NMR spectroscopy revealed diimine coordination but also the absence of amine arm coordination. Using the 1H NMR spectra in conjunction with structures determined through single crystal X-ray diffraction, the electronic structure of both complexes was described as having a Ni(II) metal center that is antiferromagnetically coupled to 2 DI radical monoanions. A greater ligand field was sought by replacing the pendant amines with phosphine groups on the DI ligands. This yielded ligands with the general formula (Ph2PPrDI) and (Ph2PEtDI). Upon addition to (COD)2Ni, each ligand immediately displaced both COD ligands from the Ni0 center to produce new κ4 N,N,P,P complexes, (Ph2PPrDI)Ni and (Ph2PEtDI)Ni, as observed via single crystal X-ray diffraction and NMR spectroscopy. Reduction of the DI backbone was observed in both complexes, with both complexes being described as having a Ni(I) metal center that is antiferromagnetically coupled to a DI radical monoanion. In addition to alkylphosphine substituted DI ligands, the coordination of a pyridine diimine (PDI) ligand featuring pendant alkylphosphines was also investigated. The addition of (Ph2PPrPDI) to (COD)2Ni produced a new paramagnetic (μeff = 1.21 μB), κ4-N,N,N,P complex identified as (Ph2PPrPDI)Ni. Reduction of the PDI chelate was observed through single crystal X-ray diffraction with the electronic structure described as having a low-spin Ni(I) metal center that is weakly coupled to a PDI radical monoanion (SNi = 1/2). The ability of the three Ni complexes to mediate the hydrosilylation of several unsaturated organic substrates was subsequently investigated. Using a range of catalyst loadings, the hydrosilylation of various substituted ketones afforded a mixture of both the mono- and di-hydrosilylated products within 24 hours, while the hydrosilylation of various substituted aldehydes afforded the mono-hydrosilylated product almost exclusively within hours. (Ph2PEtDI)Ni and (Ph2PPrPDI)Ni were identified as the most effective catalysts for the hydrosilylation of aldehydes at ambient temperature using catalyst loadings of 1 mol%.
ContributorsPorter, Tyler Mathew (Author) / Trovitch, Ryan (Thesis director) / Jones, Anne (Committee member) / Mujica, Vladimiro (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
133783-Thumbnail Image.png
Description
Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often synthesized to define structure-function relationships and optimize catalysis. However, this process can also lead to drastic and unpredictable changes in

Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often synthesized to define structure-function relationships and optimize catalysis. However, this process can also lead to drastic and unpredictable changes in the catalytic behavior. In this paper, we use density functional theory calculations to identify changes in the electronic structure of [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1ʹ-bis(diphenylphosphino)ferrocene) relative to [Ni(tdt)(dppf)] (tdt = toluene-3,4-dithiol) as a means to explain the substantially reduced electrocatalytic activity of the tdt complex. An increased likelihood of protonation at the sulfur sites of the tdt complex relative to the Ni is revealed. This decreased propensity of metal protonation may lead to less efficient metal-hydride production and subsequently catalysis.
ContributorsHerringer, Nicholas Stephen (Author) / Jones, Anne (Thesis director) / Mujica, Vladimiro (Committee member) / Pilarisetty, Tarakeshwar (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
153645-Thumbnail Image.png
Description
Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity

Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus’s ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.
ContributorsPahk, Ian (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2015
154913-Thumbnail Image.png
Description
Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods have three main problems: they are time consuming, typically not

Accurate virus detection is important for diagnosis in a timely manner to facilitate rapid interventions and treatments. RNA viruses affect an extensive amount of the world’s population, particularly in tropical countries where emerging infectious agents often arise. Current diagnostic methods have three main problems: they are time consuming, typically not field-portable, and expensive. My research goal is to develop rapid, field-portable and cost sensitive diagnostic methods for RNA viruses. Herein, two different approaches to detect RNA viruses were proposed: Conjugated gold nanoparticles for detection of viral particles or virus-specific antibodies by monitoring changes in their optical properties, and Tentacle Probes coupled with qPCR for detection and differentiation of closely-related viral strains. The first approach was divided into two projects: the study and characterization of the gold nanoparticle-antibody system for detection of virus particles using dynamic light scattering (DLS) and UV-Vis spectrophotometry, and development of a detection method for antibodies using static light scattering (SLS) and antigen-conjugated gold nanoparticles. Bovine serum albumin (BSA) conjugated gold nanoparticles could successfully detect BSA-specific antibodies in vitro, and protein E from Dengue Virus serotype 2 conjugated gold nanoparticles could detect Dengue-specific antibodies, both in vitro and in serum samples. This method is more accurate than currently used detection methods such as dot blots. The second approach uses Tentacle Probes, which are modified molecular beacons, to detect with high specificity two different strains of Lymphocytic Choriomeningitis Virus (LCMV), Armstrong and Clone-13, which differ in only one nucleotide at the target sequence. We successfully designed and use Tentacle Probes for detection of both strains of LCMV, in vitro and in serum from infected mice. Moreover, detection of as little as 10% of Clone-13 strain was possible when diluted in 90% Armstrong strain. This approach enables the detection of different strains of virus even within a mixed quasispecies and may be important for improving intervention strategies for reducing disease. The detection methods provide rapid detection of viruses, including viral strains within mixed populations, and should enhance our ability in providing early responses to emerging infectious diseases due to RNA viruses including Zika or Dengue virus.
ContributorsFranco, Lina Stella (Author) / Mujica, Vladimiro (Thesis advisor) / Blattman, Joseph N (Thesis advisor) / Garcia, Antonio A. (Committee member) / Fromme, Petra (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016
154991-Thumbnail Image.png
Description
Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry

Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) and energy transfer (singlet-singlet and triplet-triplet) can provide a detailed knowledge of those processes which can later be applied to the design of artificial photosynthetic systems. This dissertation has three main research projects. The first part focuses on design, synthesis and characterization of suitable photosensitizers for tandem cells. Different factors that can influence the performance of the photosensitizers in PESC and the attachment and use of a biomimetic electron relay to a water oxidation catalyst are explored. The second part studies PCET, using Nuclear Magnetic Resonance and computational chemistry to elucidate the structure and stability of tautomers that comprise biomimetic electron relays, focusing on the formation of intramolecular hydrogen bonds. The third part of this dissertation uses computational calculations to understand triplet-triplet energy transfer and the mechanism of quenching of the excited singlet state of phthalocyanines in antenna models by covalently attached carotenoids.
ContributorsTejeda Ferrari, Marely (Author) / Moore, Ana (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, John (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2016
155525-Thumbnail Image.png
Description
Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in

Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models.

Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule.

Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings.
ContributorsLi, Yueqi, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Buttry, Daniel (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2017