Matching Items (13)

134124-Thumbnail Image.png

Creating and Characterizing a PsaC-HydA1 Fusion in Chlamydomonas reinhardtii

Description

There is an ever-increasing need in the world to develop a source of fuel that is clean, renewable and feasible in terms of production and implementation. Hydrogen gas presents a

There is an ever-increasing need in the world to develop a source of fuel that is clean, renewable and feasible in terms of production and implementation. Hydrogen gas presents a possible solution to these energy needs, particularly if given a way to produce hydrogen gas efficiently. Biological hydrogen (biohydrogen) production presents a potential way to do just this. It is known that hydrogenases are active in wild-type algal photosynthesis pathways but are only active in anoxic environments, where they serve as electron sinks and compete poorly for electrons from photosystem I. To circumvent these issues, a psaC-hydA1 fusion gene was designed and incorporated into a plasmid that was then used to transform hydrogenase-free Chlamydomonas reinhardtii mutants. Results obtained suggest that the psaC-hydA1 gene completely replaced the wild-type psaC gene in the chloroplast genome and the fusion was expressed in the algal cells. Western blotting verified the presence of the HydA1-PsaC fusion proteins in the transformed cells, P700 photobleaching suggested the normal assembly of FA/FB clusters in PsaC-HydA1, and PSII fluorescence data suggested that HydA1 protein limited photosynthetic electron transport flow in the fusion. Hydrogen production was measured in dark, high light, and under maximal reducing conditions. In all conditions, the wild-type algal strain (with a normal PsaC protein) exhibited higher rates of hydrogen production in the light over 2 hours than the WT strain, though both strains produced similar rates in the dark.

Contributors

Agent

Created

Date Created
  • 2017-12

135407-Thumbnail Image.png

Targeting Tumors: Inclusion of Functional Groups on Ion-Containing Block Copolymers to Combat Cancer

Description

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.

Contributors

Agent

Created

Date Created
  • 2016-05

133783-Thumbnail Image.png

Computational Characterization of a Ni Catalyst

Description

Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often

Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often synthesized to define structure-function relationships and optimize catalysis. However, this process can also lead to drastic and unpredictable changes in the catalytic behavior. In this paper, we use density functional theory calculations to identify changes in the electronic structure of [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1ʹ-bis(diphenylphosphino)ferrocene) relative to [Ni(tdt)(dppf)] (tdt = toluene-3,4-dithiol) as a means to explain the substantially reduced electrocatalytic activity of the tdt complex. An increased likelihood of protonation at the sulfur sites of the tdt complex relative to the Ni is revealed. This decreased propensity of metal protonation may lead to less efficient metal-hydride production and subsequently catalysis.

Contributors

Agent

Created

Date Created
  • 2018-05

137195-Thumbnail Image.png

Synthesis and Characterization of Low-Valent Nickel Hydrosilylation Catalysts

Description

The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni.

The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni. Investigation of these complexes by 1H NMR spectroscopy revealed diimine coordination but also the absence of amine arm coordination. Using the 1H NMR spectra in conjunction with structures determined through single crystal X-ray diffraction, the electronic structure of both complexes was described as having a Ni(II) metal center that is antiferromagnetically coupled to 2 DI radical monoanions. A greater ligand field was sought by replacing the pendant amines with phosphine groups on the DI ligands. This yielded ligands with the general formula (Ph2PPrDI) and (Ph2PEtDI). Upon addition to (COD)2Ni, each ligand immediately displaced both COD ligands from the Ni0 center to produce new κ4 N,N,P,P complexes, (Ph2PPrDI)Ni and (Ph2PEtDI)Ni, as observed via single crystal X-ray diffraction and NMR spectroscopy. Reduction of the DI backbone was observed in both complexes, with both complexes being described as having a Ni(I) metal center that is antiferromagnetically coupled to a DI radical monoanion. In addition to alkylphosphine substituted DI ligands, the coordination of a pyridine diimine (PDI) ligand featuring pendant alkylphosphines was also investigated. The addition of (Ph2PPrPDI) to (COD)2Ni produced a new paramagnetic (μeff = 1.21 μB), κ4-N,N,N,P complex identified as (Ph2PPrPDI)Ni. Reduction of the PDI chelate was observed through single crystal X-ray diffraction with the electronic structure described as having a low-spin Ni(I) metal center that is weakly coupled to a PDI radical monoanion (SNi = 1/2). The ability of the three Ni complexes to mediate the hydrosilylation of several unsaturated organic substrates was subsequently investigated. Using a range of catalyst loadings, the hydrosilylation of various substituted ketones afforded a mixture of both the mono- and di-hydrosilylated products within 24 hours, while the hydrosilylation of various substituted aldehydes afforded the mono-hydrosilylated product almost exclusively within hours. (Ph2PEtDI)Ni and (Ph2PPrPDI)Ni were identified as the most effective catalysts for the hydrosilylation of aldehydes at ambient temperature using catalyst loadings of 1 mol%.

Contributors

Agent

Created

Date Created
  • 2014-05

134538-Thumbnail Image.png

Characterization of a multi-heme cytochrome c from Heliobacterium modesticaldum genome

Description

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can produce molecular hydrogen (H2) when it is fixing dinitrogen (N2). In addition, electrons can be injected into this organism via

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can produce molecular hydrogen (H2) when it is fixing dinitrogen (N2). In addition, electrons can be injected into this organism via an electrode and redox mediator in a light-dependent fashion, as shown recently by the Redding and Jones research groups. These factors make H. modesticaldum an ideal organism for use in a microbial photoelectrosynthesis cell, in which electricity can be used to power specific metabolic processes that produce a desired compound (e.g. H2). However, the injection of electrons into this organism is not optimal, which may limit the H2 production rate. There is a gene (HM1_0653) in the genome encoding a multi-heme cytochrome c that is similar to the proteins known to be used for exit of electrons in the well- known electrode-respiring bacteria (e.g. Geobacteria). RNA-sequencing in the Redding lab has shown that the HM1_0653 gene is very poorly expressed in H. modesticaldum. Boosting expression of this cytochrome could lead to faster electron transfer into the cells and thereby more H2 production via photoelectrosynthesis. In order to gain a deeper understanding of this protein, it was expressed in E.coli by two different versions: (1) the entire gene and (2) a truncated gene with an additional hexahistidine tag (truncHM1_0653). Both cultures had a pink color, indicating the biosynthesis of cytochrome. It was discovered that the HM1_0653 protein was likely released into the medium and shows the most promise for ease of purification of HM1_0653. Furthermore, we explored protein expression in H. modesticaldum using the current transformation system in the Redding Lab, but the combination of gene toxicity and copy number of the vector resulted in cloning difficulties in E.coli. An alternative vector may prove more successful.

Contributors

Agent

Created

Date Created
  • 2017-05

128928-Thumbnail Image.png

A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp. PCC6803

Description

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport.

Contributors

Agent

Created

Date Created
  • 2014-03-17

129517-Thumbnail Image.png

Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine

Description

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P[subscript 2] [bdt = benzene-1,2-dithiolate; P[subscript 2] = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P[subscript 2] [bdt = benzene-1,2-dithiolate; P[subscript 2] = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fe[subscript d]) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF[subscript 4]·OEt[subscript 2], triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO][superscript +] that can be reversibly converted back to 1 by deprotonation using NEt[subscript 3]. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)[superscript +] susceptible to external CO binding.

Contributors

Agent

Created

Date Created
  • 2014-09-01

151257-Thumbnail Image.png

Characterization of the electron acceptors of the type-I photosynthetic reaction center of Heliobacterium modesticaldum

Description

The heliobacterial reaction center (HbRC) is widely considered the simplest and most primitive photosynthetic reaction center (RC) still in existence. Despite the simplicity of the HbRC, many aspects of the

The heliobacterial reaction center (HbRC) is widely considered the simplest and most primitive photosynthetic reaction center (RC) still in existence. Despite the simplicity of the HbRC, many aspects of the electron transfer mechanism remain unknown or under debate. Improving our understanding of the structure and function of the HbRC is important in determining its role in the evolution of photosynthetic RCs. In this work, the function and properties of the iron-sulfur cluster FX and quinones of the HbRC were investigated, as these are the characteristic terminal electron acceptors used by Type-I and Type-II RCs, respectively. In Chapter 3, I develop a system to directly detect quinone double reduction activity using reverse-phase high pressure liquid chromatography (RP-HPLC), showing that Photosystem I (PSI) can reduce PQ to PQH2. In Chapter 4, I use RP-HPLC to characterize the HbRC, showing a surprisingly small antenna size and confirming the presence of menaquinone (MQ) in the isolated HbRC. The terminal electron acceptor FX was characterized spectroscopically and electrochemically in Chapter 5. I used three new systems to reduce FX in the HbRC, using EPR to confirm a S=3/2 ground-state for the reduced cluster. The midpoint potential of FX determined through thin film voltammetry was -372 mV, showing the cluster is much less reducing than previously expected. In Chapter 7, I show light-driven reduction of menaquinone in heliobacterial membrane samples using only mild chemical reductants. Finally, I discuss the evolutionary implications of these findings in Chapter 7.

Contributors

Agent

Created

Date Created
  • 2012

152441-Thumbnail Image.png

Optical properties and electrochemical dealloying of gold-silver alloy nanoparticles immobilized on composite thin-tilm electrodes

Description

Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with

Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (fÉmax = 404 nm) for pure silver to 4.1 x 107 M-1 cm-1 (fÉmax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The potentials for both silver oxidation and gold dealloying also shifted to more oxidizing potentials with increasing gold content, and both processes converged for alloy NPs with >60% gold content. Charge-mediated electrochemistry of silver NPs immobilized in LbL films, using Fc(meOH) as the charge carrier, showed that 67% of the NPs were electrochemically inactive.

Contributors

Agent

Created

Date Created
  • 2014

150554-Thumbnail Image.png

Methods and applications of nanoelectrochemical techniques

Description

Hydrogenases catalyze the interconversion of protons, electrons, and hydrogen according to the reaction: 2H+ + 2e- <-> H2 while using only earth abundant metals, namely nickel and iron for catalysis.

Hydrogenases catalyze the interconversion of protons, electrons, and hydrogen according to the reaction: 2H+ + 2e- <-> H2 while using only earth abundant metals, namely nickel and iron for catalysis. The enzymatic turnover of Clostridium acetobutylicum [FeFe]-hydrogenase has been investigated through the use of electrochemical and scanning probe techniques. Scanning tunneling microscopy (STM) imaging revealed sub-monolayer surface coverage. Cyclic voltammetry yielded a catalytic, cathodic hydrogen production signal similar to that observed for a platinum electrode. From the direct observation of single enzymes and the macroscopic electrochemical measurements obtained from the same electrode, the apparent turnover frequency (TOF) per single enzyme molecule as a function of potential was determined. The TOF at 0.7 V vs. Ag/AgCl for the four SAMs yielded a decay constant for electronic coupling (β) through the SAM of ~ 0.82 Å -1, in excellent agreement with published values for similar SAMs. One mechanism used by plants to protect against damage is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here a synthetic hexad molecule that functionally mimics the role of the antenna in NPQ is described. When the hexad is dissolved in an organic solvent, five zinc porphyrin antenna moieties absorb light, exchange excitation energy, and ultimately decay by normal photophysical processes. However, when acid is added, a pH-sensitive dye moiety is converted to a form that rapidly quenches the first excited singlet states of all five porphyrins, converting the excitation energy to heat and rendering the porphyrins kinetically incompetent to perform useful photochemistry. Charge transport was also studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-Perylenetetracarboxylic diimide (PTCDI) molecule. A reduction in the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals energy gap due to the electronic properties of the substituents is seen when compared to an unsubstituted-PTCDI. The small HOMO-LUMO energy gap allows for switching between electron- and hole-dominated charge transport with a gate voltage, thus demonstrating a single-molecule ambipolar field effect transistor.

Contributors

Agent

Created

Date Created
  • 2012