Matching Items (1,075)
Filtering by

Clear all filters

153487-Thumbnail Image.png
Description
Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL,

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.
ContributorsSharma, Satyabrata (Author) / Bazzi, Rida (Thesis advisor) / Walker, Erin (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2015
153910-Thumbnail Image.png
Description
Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has

Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has emerged as an alternative to distraction and has the potential to be beneficial. However, considering the fact that automotive environment is dynamic and noisy in nature, distraction may not arise from the manual interaction, but due to the cognitive load. Hence, speech recognition certainly cannot be a reliable mode of communication.

The thesis is focused on proposing a simultaneous multimodal approach for designing interface between driver and vehicle with a goal to enable the driver to be more attentive to the driving tasks and spend less time fiddling with distractive tasks. By analyzing the human-human multimodal interaction techniques, new modes have been identified and experimented, especially suitable for the automotive context. The identified modes are touch, speech, graphics, voice-tip and text-tip. The multiple modes are intended to work collectively to make the interaction more intuitive and natural. In order to obtain a minimalist user-centered design for the center stack, various design principles such as 80/20 rule, contour bias, affordance, flexibility-usability trade-off etc. have been implemented on the prototypes. The prototype was developed using the Dragon software development kit on android platform for speech recognition.

In the present study, the driver behavior was investigated in an experiment conducted on the DriveSafety driving simulator DS-600s. Twelve volunteers drove the simulator under two conditions: (1) accessing the center stack applications using touch only and (2) accessing the applications using speech with offered text-tip. The duration for which user looked away from the road (eyes-off-road) was measured manually for each scenario. Comparison of results proved that eyes-off-road time is less for the second scenario. The minimalist design with 8-10 icons per screen proved to be effective as all the readings were within the driver distraction recommendations (eyes-off-road time < 2sec per screen) defined by NHTSA.
ContributorsMittal, Richa (Author) / Gaffar, Ashraf (Thesis advisor) / Femiani, John (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2015
Description
Brains and computers have been interacting since the invention of the computer. These two entities have worked together to accomplish a monumental set of goals, from landing man on the moon to helping to understand how the universe works on the most microscopic levels, and everything in between. As the

Brains and computers have been interacting since the invention of the computer. These two entities have worked together to accomplish a monumental set of goals, from landing man on the moon to helping to understand how the universe works on the most microscopic levels, and everything in between. As the years have gone on, the extent and depth of interaction between brains and computers have consistently widened, to the point where computers help brains with their thinking in virtually infinite everyday situations around the world. The first purpose of this research project was to conduct a brief review for the purposes of gaining a sound understanding of how both brains and computers operate at fundamental levels, and what it is about these two entities that allow them to work evermore seamlessly as the years go on. Next, a history of interaction between brains and computers was developed, which expanded upon the first task and helped to contribute to visions of future brain-computer interaction (BCI). The subsequent and primary task of this research project was to develop a theoretical framework for a potential brain-aiding device of the future. This was done by conducting an extensive literature review regarding the most advanced BCI technology in modern times and expanding upon the findings to argue feasibility of the future device and its components. Next, social predictions regarding the acceptance and use of the new technology were made by designing and executing a survey based on the Unified Theory of the Acceptance and Use of Technology (UTAUT). Finally, general economic predictions were inferred by examining several relationships between money and computers over time.
ContributorsThum, Giuseppe Edwardo (Author) / Gaffar, Ashraf (Thesis director) / Gonzalez-Sanchez, Javier (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05