Matching Items (38)

128173-Thumbnail Image.png

Thermochemical Humidity Detection in Harsh or Non-Steady Environments

Description

We present a new method of chemical quantification utilizing thermal analysis for the detection of relative humidity. By measuring the temperature change of a hydrophilically-modified temperature sensing element vs. a

We present a new method of chemical quantification utilizing thermal analysis for the detection of relative humidity. By measuring the temperature change of a hydrophilically-modified temperature sensing element vs. a hydrophobically-modified reference element, the total heat from chemical interactions in the sensing element can be measured and used to calculate a change in relative humidity. We have probed the concept by assuming constant temperature streams, and having constant reference humidity (~0% in this case). The concept has been probed with the two methods presented here: (1) a thermistor-based method and (2) a thermographic method. For the first method, a hydrophilically-modified thermistor was used, and a detection range of 0–75% relative humidity was demonstrated. For the second method, a hydrophilically-modified disposable surface (sensing element) and thermal camera were used, and thermal signatures for different relative humidity were demonstrated. These new methods offer opportunities in either chemically harsh environments or in rapidly changing environments. For sensing humidity in a chemically harsh environment, a hydrophilically-modified thermistor can provide a sensing method, eliminating the exposure of metallic contacts, which can be easily corroded by the environment. On the other hand, the thermographic method can be applied with a disposable non-contact sensing element, which is a low-cost upkeep option in environments where damage or fouling is inevitable. In addition, for environments that are rapidly changing, the thermographic method could potentially provide a very rapid humidity measurement as the chemical interactions are rapid and their changes are easily quantified.

Contributors

Agent

Created

Date Created
  • 2017-05-24

128676-Thumbnail Image.png

A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors

Description

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

Contributors

Agent

Created

Date Created
  • 2016-12-03

134209-Thumbnail Image.png

Temperature dependency on baseline of polymer modified Tuning Forks

Description

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical performance for chemical sensors to be used in the real-world application.

Contributors

Agent

Created

Date Created
  • 2017-05

134936-Thumbnail Image.png

Walking Intervention Through Texting for Adolescents

Description

It is well established that physical activity (PA) directly correlates with many health benefits, especially when active habits are formed during childhood and adolescence. PA practiced in adolescence has been

It is well established that physical activity (PA) directly correlates with many health benefits, especially when active habits are formed during childhood and adolescence. PA practiced in adolescence has been seen to carry into adulthood, helping to combat a host of chronic diseases, such as obesity and diabetes. However, in recent years there has been a steady decline in PA among adolescents, followed by a resulting rise in sedentary behavior. Walking Intervention Through Texting for Adolescents, or WalkIT-A, was an 11.5-week intervention that built upon behavioral theory to provide an incentive-based, adaptive, physical activity intervention to inactive adolescents. The goal of this study was to investigate an intervention which combined walking with pointed behavior change strategies to incite a larger increase in PA. Using single-case, reversal (ABA) design, the study was aimed at shaping physical activity behavior in adolescents aged 12-17 through a mobile health intervention that paired adaptive goal setting with financial incentives to increase step count. The intervention was delivered using a semi-automated texting, mobile-Health (mHealth) platform, which incorporated FitBit tracking technology, adaptive goals, motivational messages, performance feedback, and points/incentives. It was hypothesized that during the adaptive intervention phase participants would increase both steps per day and active minutes compared to baseline values. Upon conclusion of the study, the three adolescent participants exhibited increased steps and active minutes during the intervention period compared to baseline and withdrawal phases. However, the specific trends identified suggest the need for future research to incorporate even stronger intervention components to overcome PA "drop-off" midway through the intervention, along with other external, environmental influencers. Despite this need, the use of adaptive goal setting combined with incentives can be an effective means to incite PA behavior change in adolescents.

Contributors

Created

Date Created
  • 2016-12

136123-Thumbnail Image.png

Optimization of Packaging Conditions for Long-term Stability of Colorimetric Carbon Dioxide Sensors for Capnography Applications in Non-intubated Patients

Description

Capnography is the monitoring of concentrations of carbon dioxide in exhaled breath. It allows reliable insight into patients' metabolism, ventilation, and blood circulation. Capnography has become an integral part of

Capnography is the monitoring of concentrations of carbon dioxide in exhaled breath. It allows reliable insight into patients' metabolism, ventilation, and blood circulation. Capnography has become an integral part of anesthesiology monitoring in operating rooms. However, its used is limited in other contexts due to deeply engrained protocols, size of capnographs, and the complexity of its interpretation. Intensive care units and in-home use could greatly benefit by a widespread usage of capnographs. Measuring methods include infrared spectroscopy, mass spectroscopy, and chemical colorimetric analysis. Infrared technology is currently the most widely used and cost-effective method for measuring carbon dioxide. However, this device can be bulky and costly. A novel portable breath CO2 analyzer was developed for this purpose. The analyzer features an accurate colorimetric CO2 sensor that can analyze ETCO2 in real time. Many advancements have been in made in the sensor fabrication process. Nevertheless, research on optimal packaging conditions and accelerated aging times have been limited. In this experiment, carbon dioxide sensors were packaged at four different environmental conditions to test their long-term stability. This was done to determine if these conditions had an effect on sensor degradation. In the second part of the experiment, a separate batch of sensors was placed inside an oven at 48 oC to investigate the effect of stabilization temperature dependence and accelerated aging. In conclusion, the data obtained from the sensors packaged at different conditions could not be concluded to be statistically different. Sensors packaged at ambient conditions had the highest average value at 0.45030 V and the ones at controlled 33% humidity had the lowest at 0.39348 V. The sensors packaged at 8.25% CO2 had the smallest variance in their voltage measurements. From these data, it can be concluded that environmental testing conditions had the greatest effect on the measured signal. The oven experiment showed that sensors rapidly stabilize at high temperature and these stay constant after reaching this stabilization. For future work, the signal difference at different environmental conditions should be done. Control of environmental conditions can be achieved by building a glove box to control temperature and humidity.

Contributors

Agent

Created

Date Created
  • 2015-05

137722-Thumbnail Image.png

Engineering of Arson Forensics and Fire Debris Investigation: The Scientific, Social, and Curricular Impact

Description

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the collection and interpretation of reliable data. PLOT-cryoadsorption, a dynamic headspace sampling technique developed at the National Institute of Standards and Technology, was proposed as an alternate technique for extracting ignitable liquid residues for analysis. The method was generally shown to be robust, flexible, precise, and accurate for a variety of applications. The possibility of using a real-time in situ monitor for screening samples was also discussed. This work, conducted by an undergraduate researcher, has implications in educational curricula as well as in the field of forensic science.

Contributors

Agent

Created

Date Created
  • 2013-05

129235-Thumbnail Image.png

Colorimetric Humidity Sensor Based on Liquid Composite Materials for the Monitoring of Food and Pharmaceuticals

Description

Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper,

Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment’s relative humidity and changes color accordingly. The humidity indicator is prepared by casting a few microliters of low-toxicity reagents on a nontoxic substrate. The sensing material is a newly synthesized liquid composite that comprises a hygroscopic medium for environmental humidity capture and a color indicator that translates the humidity level into a distinct color change. Sodium borohydride was used to form a liquid composite medium, and DenimBlu30 dye was used as a redox indicator. The liquid composite medium provides a hygroscopic response to the relative humidity, and DenimBlu30 translates the chemical changes into a visual change from yellow to blue. The borate–redox dye-based humidity sensor was prepared, and then Fourier transform infrared spectroscopy, differential scanning calorimetry, and image analysis methods were used to characterize the chemical composition, optimize synthesis, and gain insight into the sensor reactivity. Test results indicated that this new sensing material can detect relative humidity in the range of 5–100% in an irreversible manner with good reproducibility and high accuracy. The sensor is a low-cost, highly sensitive, easy-to-use humidity indicator. More importantly, it can be easily packaged with products to monitor humidity levels in pharmaceutical and food packaging.

Contributors

Agent

Created

Date Created
  • 2014-09-09

158067-Thumbnail Image.png

Multifunctional Soft Materials: Design, Development and Applications

Description

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams,

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.

Contributors

Agent

Created

Date Created
  • 2020

158761-Thumbnail Image.png

Novel Gas Sensor Solutions for Air Quality Monitoring

Description

Global industrialization and urbanization have led to increased levels of air pollution. The costs to society have come in the form of environmental damage, healthcare expenses, lost productivity, and premature

Global industrialization and urbanization have led to increased levels of air pollution. The costs to society have come in the form of environmental damage, healthcare expenses, lost productivity, and premature mortality. Measuring pollutants is an important task for identifying its sources, warning individuals about dangerous exposure levels, and providing epidemiologists with data to link pollutants with diseases. Current methods for monitoring air pollution are inadequate though. They rely on expensive, complex instrumentation at limited fixed monitoring sites that do not capture the true spatial and temporal variation. Furthermore, the fixed outdoor monitoring sites cannot warn individuals about indoor air quality or exposure to chemicals at worksites. Recent advances in manufacturing and computing technology have allowed new classes of low-cost miniature gas sensor to emerge as possible alternatives. For these to be successful however, there must be innovations in the sensors themselves that improve reliability, operation, and their stability and selectivity in real environments. Three novel gas sensor solutions are presented. The first is the development of a wearable personal exposure monitor using all commercially available components, including two metal oxide semiconductor gas sensors. The device monitors known asthma triggers: ozone, total volatile organic compounds, temperature, humidity, and activity level. Primary focus is placed on the ozone sensor, which requires special circuits, heating algorithm, and calibration to remove temperature and humidity interferences. Eight devices are tested in multiple field tests. The second is the creation of a new compact optoelectronic gas sensing platform using colorimetric microdroplets printed on the surface of a complementary-metal-oxide-semiconductor (CMOS) imager. The nonvolatile liquid microdroplets provide a homogeneous, uniform environment that is ideal for colorimetric reactions and lensless optical measurements. To demonstrate one type of possible indicating system gaseous ammonia is detected by complexation with Cu(II). The third project continues work on the CMOS imager optoelectronic platform and develops a more robust sensing system utilizing hydrophobic aerogel particles. Ammonia is detected colorimetrically by its reaction with a molecular dye, with additives and surface treatments enhancing uniformity of the printed films. Future work presented at the end describes a new biological particle sensing system using the CMOS imager.

Contributors

Agent

Created

Date Created
  • 2020

153684-Thumbnail Image.png

Evaluation of vapor intrusion pathway assessment through long-term monitoring studies

Description

Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is

Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it influences pathway assessment decision-making. This research included the first-ever collection of a long-term high-frequency indoor air data set at a house with VI impacts overlying a dilute chlorinated solvent groundwater plume. It also included periodic synoptic snapshots of groundwater and soil gas data and high-frequency monitoring of building conditions and environmental factors. Indoor air trichloroethylene (TCE) concentrations varied over three orders-of-magnitude under natural conditions, with the highest daily VI activity during fall, winter, and spring months. These data were used to simulate outcomes from common sampling strategies, with the result being that there was a high probability (up to 100%) of false-negative decisions and poor characterization of long-term exposure. Temporal and spatial variability in subsurface data were shown to increase as the sampling point moves from source depth to ground surface, with variability of an order-of-magnitude or more for sub-slab soil gas. It was observed that indoor vapor sources can cause subsurface vapor clouds and that it can take days to weeks for soil gas plumes created by indoor sources to dissipate following indoor source removal. A long-term controlled pressure method (CPM) test was conducted to assess its utility as an alternate approach for VI pathway assessment. Indoor air concentrations were similar to maximum concentrations under natural conditions (9.3 μg/m3 average vs. 13 μg/m3 for 24 h TCE data) with little temporal variability. A key outcome was that there were no occurrences of false-negative results. Results suggest that CPM tests can produce worst-case exposure conditions at any time of the year. The results of these studies highlight the limitations of current VI pathway assessment approaches and demonstrate the need for robust alternate diagnostic tools, such as CPM, that lead to greater confidence in data interpretation and decision-making.

Contributors

Agent

Created

Date Created
  • 2015