Matching Items (929)
136378-Thumbnail Image.png
Description
While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by

While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by federal regulations. Although these companies adhere to the Uniform Anatomical Gift Act, the lack of a single entity responsible for overseeing their operations has led to public skepticism and animosity among competing businesses. Legislation has the potential to legitimize the industry. For it to be successful, however, the intricacies of a complex market that deals directly with the movement of human remains and intangible issues of human integrity and morality, must be thoroughly understood.
ContributorsGlynn, Emily Sanders (Author) / Brian, Jennifer (Thesis director) / Fisher, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of English (Contributor)
Created2015-05
137308-Thumbnail Image.png
Description
The ringtail (Bassariscus astutus), a member of the Procyonidae, is capable of 180 degrees of hindlimb reversal during headfirst descent down a vertical substrate. The goal of this study was to determine the presence or absence of myological adaptations related to hindlimb reversal in the ringtail. Data for B. astutus

The ringtail (Bassariscus astutus), a member of the Procyonidae, is capable of 180 degrees of hindlimb reversal during headfirst descent down a vertical substrate. The goal of this study was to determine the presence or absence of myological adaptations related to hindlimb reversal in the ringtail. Data for B. astutus are presented, including muscle weights and muscle maps ascertained from the dissection of four hindlimbs. Data from the current study were compared to published accounts of other species capable of hindlimb reversal, including procyonids (raccoon, coati, kinkajou, olingo), a mustelid (marten), palm civet, mongoose, tree squirrel, common tree shrew, and slow loris. Muscle mass data from this study demonstrate that the hip adductors of scansorial mammals are significantly more robust than those of terrestrial mammals, indicating a myological adaptation for climbing, but not necessarily hindlimb reversal. Among hindlimb reversers, the majority exhibit one belly of m. sartorius, the presence of m. extensor digiti I longus, and a fibular origin for m. fibularis longus. These characteristics indicate an emphasis on hip extension, ankle plantarflexion, and pes inversion. However, these characteristics are more likely due to phylogeny than hindlimb reversal because of their presence in closely-related non-reversers. Additional data on families outside of Carnivora may help determine if these myological traits are indeed due to phylogeny. Other myological data, such as moment arms and cross sectional areas, may provide evidence of adaptations for hindlimb reversal.
ContributorsLiu, Margaret Chuan (Author) / Fisher, Rebecca (Thesis director) / Hinrichs, Richard (Committee member) / Kusumi, Kenro (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137452-Thumbnail Image.png
Description
Anole lizards that inhabit the islands and mainland of the Caribbean basin have evolved morphological traits adapted to the microhabitat that they occupy. The anoles on these islands have been characterized as "ecomorphs" or morphologically and behaviorally-adapted groups, including: crown-giant, trunk-crown, trunk, grass-bush, twig, and trunk-ground. Ecomorphs display morphological features

Anole lizards that inhabit the islands and mainland of the Caribbean basin have evolved morphological traits adapted to the microhabitat that they occupy. The anoles on these islands have been characterized as "ecomorphs" or morphologically and behaviorally-adapted groups, including: crown-giant, trunk-crown, trunk, grass-bush, twig, and trunk-ground. Ecomorphs display morphological features that are specifically adapted to the habitat that the anole occupies. One key morphological difference is tail length. While the anoles Anolis carolinensis and A. sagrei have similar ratios of tail length versus snout-to-vent length (SVL), they occupy different microhabitats. Specifically, A. carolinensis inhabits trunk-crown habitats while A. sagrei is found in trunk-ground regions. In this study, I focused on analysis of the caudal vertebrae of these two species, to determine if the structure of the osteological elements reflected differences in microhabitat adaptation. Skeletal preparations reveal that A. carolinensis have 40 \u2014 46 caudal vertebrae, and A. sagrei have 38 \u2014 49 caudal vertebrae. Transverse processes are present in Ca1-8 in A. carolinensis whereas transverse processes in A. sagrei span from Ca1-42 vertebrae. Ca6\u201440 have autotomy planes in A. sagrei, whereas only Ca8\u201417 have autotomy planes in A. carolinensis. These findings indicate that A. carolinensis are limited in the ability to autotomize their tail compared to A. sagrei. A. carolinensis, living higher in the trees than A. sagrei, might incur a greater impairment of locomotor function if autotomized. There appears to be no differences between males and females of both species in respect to vertebrae lengths. Differences between A. carolinensis and A. sagrei in terms of vertebral length are found in Ca12-15, 29-30, 34, and 37. The finding indicates that almost all caudal vertebrae between A. carolinensis and A. sagrei have similar relative lengths, but seven vertebrae have statistically significant differences. The biological significance of the findings is not clear, but functional and myological studies may help elucidate the reason of the observed differences.
ContributorsLasku, Eris (Author) / Kusumi, Kenro (Thesis director) / Fisher, Rebecca (Committee member) / Hsieh, Tonia (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2013-05
134665-Thumbnail Image.png
Description
Anthropomorphic animal characters are common in animation, but there is limited data on the factors that contribute to such a trend. I studied how animated animals in popular movies look and behave like humans, and what that indicates about us that we prefer them that way. My study was conducted

Anthropomorphic animal characters are common in animation, but there is limited data on the factors that contribute to such a trend. I studied how animated animals in popular movies look and behave like humans, and what that indicates about us that we prefer them that way. My study was conducted via literature review, film review, facial measurements, and the creation of my own character. I discovered the physical importance of eyes in proportion to the rest of the face and the emotional importance of those animals acting as metaphors for us as humans.
ContributorsEhuan, Ariana Jade (Author) / Adamson, Joni (Thesis director) / Drum, Meredith (Committee member) / Fisher, Rebecca (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134881-Thumbnail Image.png
Description
Vertebral osteology varies greatly among snake species. This variation may be related to specialization in microhabitat and prey-capture. Radiographs of eight preserved male specimens were taken in order to analyze the vertebral length and morphology of snakes which exhibit extreme characteristics in microhabitat utilization and prey-capture methods (highly arboreal, effective

Vertebral osteology varies greatly among snake species. This variation may be related to specialization in microhabitat and prey-capture. Radiographs of eight preserved male specimens were taken in order to analyze the vertebral length and morphology of snakes which exhibit extreme characteristics in microhabitat utilization and prey-capture methods (highly arboreal, effective constrictor). This group includes two representatives each from four major families within Serpentes: Boidae, Pythonidae, Viperidae, and Colubridae. The four boids and pythons are effective constrictors, while the four vipers and colubrids are non-constricting. One specimen of each pair is highly arboreal, while the other is terrestrial. Findings support previous research in that constrictors had larger total numbers of vertebrae than non-constrictors. When average maximum adult length and morphology of axial musculature was taken into consideration, however, flexibility gained by vertebral number alone does not theoretically confer a mechanical advantage during constriction, at least among the specimens examined. All arboreal specimens had tails with a greater number of vertebrae than their con-familial terrestrial counterpart, implicating greater flexibility in the caudal region as an important characteristic for arboreality across taxa. Examination of segments of 10 vertebrae revealed that the greatest vertebral elongation occurred at the midpoint of the thoracic region. Reduction in size and length of tail vertebrae appears to occur independently of thoracic vertebrae. Colubrids, specifically, demonstrated a unique caudal vertebral elongation pattern which could potentially be advantageous for quick locomotion. These results indicate that caudal morphology may be more important in behavioral specialization than previously thought.
ContributorsGuerrero, Anna Clemencia (Author) / Fisher, Rebecca (Thesis director) / DeNardo, Dale (Committee member) / Elliott, Steve (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148387-Thumbnail Image.png
Description

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently for grasping and exploring (Lee, 1992; Byrne et al., 2006a),

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently for grasping and exploring (Lee, 1992; Byrne et al., 2006a), while posterior arms are more frequently utilized for crawling in O. vulgaris (Levy et al., 2015). In addition, O. vulgaris uses favored arms when retrieving food and making contact with a T-maze as dictated by their lateralized vision (Byrne, 2006b). O. vulgaris also demonstrates a preference for anterior arms when retrieving food from a Y-maze (Gutnick et. al. 2020). In Octopus bimaculoides bending and elongation were more frequent in anterior arms than posterior arms during reaching and grasping tasks, and right arms displayed deformation more frequently than left arms, with the exception of the hectocotylus (R3) in males (Kennedy et. al. 2020). Given these observed functional differences, the goal of this study was to determine if morphological differences exist between different octopus arm identities, coded as L1-L4 and R1-R4. In particular, the relationship between arm length and arm identity was analyzed statistically. The dataset included 111 intact arms from 22 wild-caught specimens of O. bimaculoides (11 male and 11 female). Simple linear regressions and an analysis of covariance were performed to test the relationship between arm length and a number of factors, including body mass, sex, anterior versus posterior location, and left versus the right side. Mass had a significant linear relationship with arm length and a one-way ANOVA demonstrated that arm identity is significantly correlated with arm length. Moreover, an analysis of covariance demonstrated that independent of mass, arm identity has a significant linear relationship with arm length. Despite an overall appearance of bilateral symmetry, arms of different identities do not have statistically equivalent lengths in O. bimaculoides. Furthermore, differences in arm length do not appear to be related to sex, anterior versus posterior location, or left or right side. These results call into question the existing practice of treating all arms as equivalent by either using a single-arm measurement as representative of all eight or calculating an average length and suggest that morphological analyses of specific arm identities may be more informative.<br/><br/>Chapter 2: Predicting and Analyzing Octopus bimaculoides Sensitivity to Global Anesthetic<br/>Although global anesthetic is widely used in human and veterinary medicine the mechanism and impact of global anesthetic is relatively poorly comprehended, even in well-studied mammalian models. Invertebrate anesthetic is even less understood. In order to evaluate factors that impact anesthetic effectiveness analyses were conducted on 22 wild-caught specimens of Octopus bimaculoides during 72 anesthetic events.Three machine learning models: regression tree, random forest, and generalized additive model were utilized to make predictions of the concentration of anesthetic (percent ethanol by volume) from 11 features and to determine feature importance in making those predictions. The fit of each model was analyzed on three criteria: correlation coefficient, mean squared error, and relative error. Feature importance was determined in a model-specific manner. Predictions from the best performing model, random forest, have a .82 correlation coefficient with experimental values. Feature importance suggests that temperature on arrival and cohabitation factors strongly influence predictions for anesthesia concentration. This likely indicates the transportation process was incurring stress on the animals and that cohabitation was also stressful for the typically solitary O. bimaculoides. This long-term stress could lead to a decline in the animal’s well-being and a lower necessary ethanol concentration (Horvath et al., 2013). This analysis provides information to improve the care of octopus in laboratory settings and furthers the understanding of the effects of global anesthetic in invertebrates, particularly one with a distributed nervous system.

ContributorsSorge, Marieke Alexandria (Author) / Fisher, Rebecca (Thesis director) / Zhao, Yunpeng (Committee member) / Marvi, Hamid (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05