Matching Items (166)
151881-Thumbnail Image.png
Description
In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and

In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and composer devoted to musical modernism, he had established himself as a writer of film music and Kampflieder, fighting songs, for the European workers' movement. After two visits of the United States in the mid-1930s, Eisler settled in America where he spent a decade (1938-1948), composed a considerable number of musical works, including important film scores, instrumental music and songs, and, in collaboration with Theodor W. Adorno, penned the influential treatise Composing for the Films. Yet despite his substantial contributions to American culture American scholarship on Eisler has remained sparse, perhaps due to his reputation as the "Karl Marx in Music." In this study I examine Eisler's American exile and argue that Eisler, through his roles as a musician and a teacher, actively sought to enrich American culture. I will present background for his exile years, a detailed overview of his American career as well as analyses and close readings of several of his American works, including three of his American film scores, Pete Roleum and His Cousins (1939), Hangmen Also Die (1943), and None But the Lonely Heart (1944), and the String Quartet (1940), Third Piano Sonata (1943), Woodbury Liederbüchlein (1941), and Hollywood Songbook (1942-7). This thesis builds upon unpublished correspondence and documents available only in special collections at the University of Southern California (USC), as well as film scores in archives at USC and the University of California, Los Angeles. It also draws on Eisler studies by such European scholars as Albrecht Betz, Jürgen Schebera, and Horst Weber, as well as on research of film music scholars Sally Bick and Claudia Gorbman. As there is little written on the particulars of Eisler's American years, this thesis presents new facts and new perspectives and aims at a better understanding of the artistic achievements of this composer.
ContributorsBoyd, Caleb (Author) / Feisst, Sabine (Thesis advisor) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2013
Description
CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some

CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some features of video game design that relate to this project are considered, and some specifics of hardware implementation are addressed.
ContributorsPeterson, Julian (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Levy, Benjamin (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
Description
Johann Sebastian Bach's violin Sonata I in G minor, BWV 1001, is a significant and widely performed work that exists in numerous editions and also as transcriptions or arrangements for various other instruments, including the guitar. A pedagogical guitar performance edition of this sonata, however, has yet to be published.

Johann Sebastian Bach's violin Sonata I in G minor, BWV 1001, is a significant and widely performed work that exists in numerous editions and also as transcriptions or arrangements for various other instruments, including the guitar. A pedagogical guitar performance edition of this sonata, however, has yet to be published. Therefore, the core of my project is a transcription and pedagogical edition of this work for guitar. The transcription is supported by an analysis, performance and pedagogical practice guide, and a recording. The analysis and graphing of phrase structures illuminate Bach's use of compositional devices and the architectural function of the work's harmonic gravities. They are intended to guide performers in their assessment of the surface ornamentation and suggest a reduction toward its fundamental purpose. The end result is a clarification of the piece through the organization of phrase structures and the prioritization of harmonic tensions and resolutions. The compiling process is intended to assist the performer in "seeing the forest from the trees." Based on markings from Bach's original autograph score, the transcription considers fingering ease on the guitar that is critical to render the music to a functional and practical level. The goal is to preserve the composer's indications to the highest degree possible while still adhering to the technical confines that allow for actual execution on the guitar. The performance guide provides suggestions for articulation, phrasing, ornamentation, and other interpretive decisions. Considering the limitations of the guitar, the author's suggestions are grounded in various concepts of historically informed performance, and also relate to today's early-music sensibilities. The pedagogical practice guide demonstrates procedures to break down and assimilate the musical material as applied toward the various elements of guitar technique and practice. The CD recording is intended to demonstrate the transcription and the connection to the concepts discussed. It is hoped that this pedagogical edition will provide a rational that serves to support technical decisions within the transcription and generate meaningful interpretive realizations based on principles of historically informed performance.
ContributorsFelice, Joseph Philip (Author) / Koonce, Frank (Thesis advisor) / Feisst, Sabine (Committee member) / Swartz, Jonathan (Committee member) / Arizona State University (Publisher)
Created2013
151722-Thumbnail Image.png
Description
Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating

Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. Applied to the sounds of objects, this work examines modeling the perception of objects as well as their physical properties and the ability to simulate interactive events with such objects. To create soundscapes to re-sonify geographic environments, a method of automated soundscape design is presented. Using recorded sounds that are classified based on acoustic, social, semantic, and geographic information, this method produces stochastically generated soundscapes to re-sonify selected geographic areas. Drawing on prior knowledge, local sounds and those deemed similar comprise a locale's soundscape. In the context of re-sonifying events, this work examines processes for modeling and estimating the excitations of sounding objects. These include plucking, striking, rubbing, and any interaction that imparts energy into a system, affecting the resultant sound. A method of estimating a linear system's input, constrained to a signal-subspace, is presented and applied toward improving the estimation of percussive excitations for re-sonification. To work toward robust recording-based modeling and re-sonification of objects, new implementations of banded waveguide (BWG) models are proposed for object modeling and sound synthesis. Previous implementations of BWGs use arbitrary model parameters and may produce a range of simulations that do not match digital waveguide or modal models of the same design. Subject to linear excitations, some models proposed here behave identically to other equivalently designed physical models. Under nonlinear interactions, such as bowing, many of the proposed implementations exhibit improvements in the attack characteristics of synthesized sounds.
ContributorsFink, Alex M (Author) / Spanias, Andreas S (Thesis advisor) / Cook, Perry R. (Committee member) / Turaga, Pavan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151778-Thumbnail Image.png
Description
This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These

This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These three solos challenge the performer in various ways including complex rhythm, use of extended techniques such as growling, glissando, and multiphonics, and the incorporation of technology into a live performance. In addition to background information, a performance practice guide has also been included for each of the pieces. This guide provides recommendations and suggestions for future performers wishing to study and perform these works. Also included are transcripts of interviews done with each of the composers as well as full scores for each of the pieces. Accompanying this document are recordings of each of the three pieces, performed by the author.
ContributorsVaughan, Melissa Lynn (Author) / Spring, Robert (Thesis advisor) / Micklich, Albie (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151795-Thumbnail Image.png
Description
Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to

Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to letting sound evolve freely, different movements revolve around different sounds and sound producing techniques.
ContributorsDori, Gil (Contributor) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
151459-Thumbnail Image.png
Description
Throughout history composers and artists have been inspired by the natural world. Nature's influence on music is extraordinary, though water in particular, has had a unique magnetic pull. The large number of compositions dealing with water, from Handel's Water Music (1717) to Ros Bandt's and Leah Barclay's Rivers Talk (2012),

Throughout history composers and artists have been inspired by the natural world. Nature's influence on music is extraordinary, though water in particular, has had a unique magnetic pull. The large number of compositions dealing with water, from Handel's Water Music (1717) to Ros Bandt's and Leah Barclay's Rivers Talk (2012), reflects this continuous fascination. Since the late 1940s, composers have ventured further and brought actual sounds from the environment, including water recorded on tape, into the musical arena. Moreover, since the 1960s, some composers have nudged their listeners to become more ecologically aware. Much skepticism exists, as with any unconventional idea in history, and as a result compositions belonging to this realm of musique concrète are not as widely recognized and examined as they should be. In this thesis, I consider works of three composers: Annea Lockwood, Eve Beglarian, and Leah Barclay, who not only draw inspiration from nature, but also use their creativity to call attention to pristine environments. All three composers embrace the idea that music can be broadly defined and use technology as a tool to communicate their artistic visions. These artists are from three different countries and represent three generations of composers who set precedents for a new way of composing, listening to, performing, and thinking about music and the environment. This thesis presents case studies of Lockwood's A Sound Map of the Danube River, Beglarian's Mississippi River Project, and Barclay's Sound Mirrors. This thesis draws on unpublished correspondence with the composers, analytical theories of R. Murray Schafer, Barry Truax, and Martijn Voorvelt, among others, musicological publications, eco-critical and environmental studies by Al Gore, Bill McKibben, and Vandana Shiva, as well as research by feminist scholars. As there is little written on music and nature from an eco-critical and eco-feminist standpoint, this thesis will contribute to the recognition of significant figures in contemporary music that might otherwise be overlooked. In this study I maintain that composers and sound artists engage with sounds in ways that reveal aspects of particular places, and their attitudes toward these places to lead listeners toward a greater ecological awareness.
ContributorsRichardson, Jamilyn (Author) / Feisst, Sabine (Thesis advisor) / Solís, Ted (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2012