Matching Items (56)

135810-Thumbnail Image.png

Testbed Implementation of the Meta-MAC Protocol

Description

The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC

The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due to a lack of suitable hardware. This thesis presents a proof-of-concept implementation of the meta-MAC protocol by utilizing a programmable radio platform, the Wireless MAC Processor (WMP), in combination with a host-level software module. The implementation of this host module, and the requirements and challenges faced therein, is the primary subject of this thesis. This implementation can combine, with certain constraints, a set of protocols each represented as an extended finite state machine for easy programmability. To illustrate the combination principle, protocols of the same type but with varying parameters are combined in a testbed environment, in what is termed parameter optimization. Specifically, a set of TDMA protocols with differing slot assignments are experimentally combined. This experiment demonstrates that the meta-MAC implementation rapidly converges to non-conflicting TDMA slot assignments for the nodes, with similar results to those in simulation. This both validates that the presented implementation properly implements the meta-MAC protocol, and verifies that the meta-MAC protocol can be as effective on real wireless hardware as it is in simulation.

Contributors

Created

Date Created
  • 2016-05

133211-Thumbnail Image.png

Beyond Deep Learning: Synthesizing Navigation Programs using Neural Turing Machines

Description

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.

Contributors

Agent

Created

Date Created
  • 2018-05

148109-Thumbnail Image.png

DSL for Spatio-Temporal Perception Logic Specifications

Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

Contributors

Agent

Created

Date Created
  • 2021-05

136275-Thumbnail Image.png

On the Semantic Equivalence of a Program and Any of its Intermediate Representations

Description

The central goal of this thesis is to develop a practical approach to validating the correctness of SSA forms. Since achieving this goal is very involved for a general program,

The central goal of this thesis is to develop a practical approach to validating the correctness of SSA forms. Since achieving this goal is very involved for a general program, we restrict our attention to simple programs. In particular, the programs we consider are loop-free and are comprised of simple assignments to scalar variables, as well as input and output statements. Even for such a simple program, a full formal treatment would be very involved, extending beyond the scope of an undergraduate honors thesis.

Contributors

Created

Date Created
  • 2015-05

132967-Thumbnail Image.png

Learning Generalized Heuristics Using Deep Neural Networks

Description

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.

Contributors

Created

Date Created
  • 2019-05

152127-Thumbnail Image.png

Leveraging metadata for extracting robust multi-variate temporal features

Description

In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate

In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust multi-variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering, and describing salient features in multi-variate time series data sets. The proposed RMT feature can also be used for supporting multiple analysis tasks, such as visualization, segmentation, and searching / retrieving based on multi-variate time series similarities. Experiments confirm that the proposed feature extraction algorithm is highly efficient and effective in identifying robust multi-scale temporal features of multi-variate time series.

Contributors

Agent

Created

Date Created
  • 2013

151467-Thumbnail Image.png

Scalable knowledge interchange broker: design and implementation for semiconductor supply chain systems

Description

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP models. Recently a single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for forecast bias in customer demand data using different smoothing techniques. The optimization model could then use information provided by the forecast model to make better decisions for the process model. The composition of ISM with LP and DEVS models resulted in the first realization of what is now called the Optimization Simulation Forecast (OSF) platform. It could handle a single echelon supply chain system consisting of single hubs and single products In this thesis, this single-echelon simulation platform is extended to handle multiple echelons with multiple inventory elements handling multiple products. The main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such that ISM interactions with the LP and DEVS models could also be supported. To achieve this, a new, scalable XML schema for the KIB has been developed. The XML schema has also resulted in strengthening the KIB execution engine design. A sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to compute forecast customer demands and safety stocks over multiple hubs and products. Basic examples for semiconductor manufacturing spanning single and two echelon supply chain systems have been developed and analyzed. Experiments using perfect data were conducted to show the correctness of the OSF platform design and implementation. Simple, but realistic experiments have also been conducted. They highlight the kinds of supply chain dynamics that can be evaluated using discrete event process simulation, linear programming optimization, and heuristics forecasting models.

Contributors

Agent

Created

Date Created
  • 2012

151780-Thumbnail Image.png

A modular ROS package for linear temporal logic based motion planning

Description

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.

Contributors

Agent

Created

Date Created
  • 2013

151173-Thumbnail Image.png

A high level language for human robot interaction

Description

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to environments too dangerous for humans. For such human-robot interaction, natural language is considered a good communication medium as it allows humans with less training about the robot's internal language to be able to command and interact with the robot. However, any natural language communication from the human needs to be translated to a formal language that the robot can understand. Similarly, before the robot can communicate (in natural language) with the human, it needs to formulate its communique in some formal language which then gets translated into natural language. In this paper, I develop a high level language for communication between humans and robots and demonstrate various aspects through a robotics simulation. These language constructs borrow some ideas from action execution languages and are grounded with respect to simulated human-robot interaction transcripts.

Contributors

Agent

Created

Date Created
  • 2012

151431-Thumbnail Image.png

Replay debugger for human interactive multiple threaded android applications

Description

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same input. To make things worse, the target erroneous cases may happen just in a few specific runs. Besides, the randomness of user interactions makes the whole debugging procedure more unpredictable. Thus, debugging a multiple threaded application is a tough and challenging task. This thesis introduces a replay mechanism for debugging user interactive multiple threaded Android applications. The approach is based on the 'Lamport Clock' concept, 'Event Driven' implementation and 'Client-Server' architecture. The debugger tool described in this thesis provides a user controlled debugging environment where users or developers are allowed to use modified record application to generate a log file. During the record time, all the necessary events like thread creation, synchronization and user input are recorded. Therefore, based on the information contained in the generated log files, the debugger tool can replay the application off-line since log files provide the deterministic order of execution. In this case, user or developers can replay an application as many times as they need to pinpoint the errors in the applications.

Contributors

Agent

Created

Date Created
  • 2012