Matching Items (53)

Grad School: Human Growth Horror - Creative Project Entry of an Action/Adventure Computer Game Designed to Experimentally Demonstrate Viable Engineering Concepts for Educational Purposes

Description

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.

Contributors

Agent

Created

Date Created
  • 2014-05

136771-Thumbnail Image.png

Continuous Enzymatic Detection of Traumatic Brain Injury

Description

My main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include:

My main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.

Contributors

Agent

Created

Date Created
  • 2011-12

Biomimetic Actuators with Coiled Shape Memory Alloy Technology

Description

This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use

This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant to actuator design.

Contributors

Agent

Created

Date Created
  • 2014-05

137067-Thumbnail Image.png

Electrochemical Detection of Environmental Contaminants Using Portable Low-Cost Sensor

Description

Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with

Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental contaminant sensor was developed using electrochemical techniques and an efficient hydrogel capture mechanism. The sensor operates with high sensitivity and maintains specificity without the added requirement of extensive electrode modification. Rather, specificity is obtained by choosing specific potential regions in which individual contaminants show reduction or oxidation activity. A calibration curve was generated showing the utility of the sensor in detecting gas compounds reliably in reference to a current state of the art sensor. Reusability of the sensor was also demonstrated with a cyclic exposure test in which response reversibility was observed. As such, the investigated sensor shows great promise as a replacement technology in the current environmental contaminant detector industry.

Contributors

Created

Date Created
  • 2014-05

137263-Thumbnail Image.png

Multimarker Sensor Development for Intermediate Glycemic Index, A Novel Approach for a Glycated Albumin Sensor

Description

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.

Contributors

Agent

Created

Date Created
  • 2014-05

136798-Thumbnail Image.png

Pre-Symptomatic Detection of Lung Cancer Via Protein Biomarkers

Description

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome.

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.

Contributors

Agent

Created

Date Created
  • 2014-05

137648-Thumbnail Image.png

Camp Hope: Defending a Student-Centered Model for Improving Education in the Foster Care Community & Abroad

Description

Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems

Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems currently facing Arizona's foster care system. What emerges is Camp Hope (i.e. the "product") and in turn a model by which it can be promulgated throughout the Phoenix metropolitan area and abroad. Prototype camps held abroad in Mexico, and at local group homes in Tempe, Arizona verify the initial user inputs with 68% of campers reporting new academic interests in pre/post camp surveys. Future work includes continued fine-tuning of the model through continued Arizona camps, and longer-term surveys tracking the development of children who participate in the program.

Contributors

Agent

Created

Date Created
  • 2013-05

137575-Thumbnail Image.png

Electroporation of HeLa Cells with Propidium Iodide using ""Anodisc"" Nanopore Inorganic Membrane-Buffered MEAs

Description

The use of microelectrode arrays (MEA) to electroporate cells is now a reliable way of transfecting RNA interfering substances with high viability and efficiency. However, as the 50-200 micron electrodes

The use of microelectrode arrays (MEA) to electroporate cells is now a reliable way of transfecting RNA interfering substances with high viability and efficiency. However, as the 50-200 micron electrodes are coated with many cells, there are differences in both viability and efficiency between the outside and inside of the electrode. This is due to the field created by the electrode, which has higher intensities toward the outside and lower intensities toward the middle. In order to get the electric field to spread in a more even manner, an "Anodisc" inorganic membrane seeded with cells was placed on the MEA to act as a buffer to the electric fields. One hundred percent transfection efficiency on live cells was found on one sample, though there were problems encountered along the experimental process that introduced error into the results, some of which included the inability for cells to grow to high levels of confluency on the Anodisc as well as the inverted imaging technique used on the opaque disc.

Contributors

Agent

Created

Date Created
  • 2013-05

BIOELECTRIC IMPEDANCE ANALYSIS AS A METHOD FOR QUANTITATIVE HYDRATION MEASUREMENT

Description

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.

Contributors

Agent

Created

Date Created
  • 2013-05

137782-Thumbnail Image.png

A rapid and Label-free IL-18 point-of-care biosensor for CVD detection

Description

Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid

Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid and portable CVD point-of-care diagnosis. IL-18 was chosen for this CVD biosensor due to its ability to detect plaque vulnerability of the heart. Custom (hand) made sensors, which utilized a three electrode configuration with a gold disk working electrode, were created to run EIS using both IL-18 and anti-IL-18 molecules in both purified and blood solutions. The EIS results for IL-18 indicated the optimal detection frequency to be 371Hz. Blood interaction on the working electrode increased the dynamic range of impedance values for the biosensor. Future work includes Developing and testing prototypes of the biosensor along with determining if a Nafion based coating on the working electrode will reduce the dynamic range of impedance values caused by blood interference.

Contributors

Agent

Created

Date Created
  • 2013-05