Matching Items (78)
151067-Thumbnail Image.png
Description
Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is

Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is a major limitation to using NIPAAm-based gels for nearly any biomedical application. In this work, a graft copolymer design was used to synthesize polymers which combine the convenient injectability of poly(NIPAAm) with gel water content controlled by hydrophilic side-chain grafts based on Jeffamine® M-1000 acrylamide (JAAm). The first segment of this work describes the synthesis and characterization of poly(NIPAAm-co-JAAm) copolymers which demonstrates controlled swelling that is nearly independent of LCST. The graft copolymer design was then used to produce a degradable antimicrobial-eluting gel for prevention of prosthetic joint infection. The resorbable graft copolymer gels were shown to have three unique characteristics which demonstrate their suitability for this application. First, antimicrobial release is sustained and complete within 1 week. Second, the gels behave like viscoelastic fluids, enabling complete surface coverage of an implant without disrupting fixation or movement. Finally, the gels degrade rapidly within 1-6 weeks, which may enable their use in interfaces where bone healing takes place. Graft copolymer hydrogels were also developed which undergo Michael addition in situ with poly(ethylene glycol) diacrylate to form elastic gels for endovascular embolization of saccular aneurysms. Inclusion of JAAm grafts led to weaker physical crosslinking and faster, more complete chemical crosslinking. JAAm grafts prolonged the delivery window of the system from 30 seconds to 220 seconds, provided improved gel swelling, and resulted in stronger, more elastic gels within 30 minutes after delivery.
ContributorsOverstreet, Derek (Author) / Caplan, Michael (Thesis advisor) / Massia, Stephen (Committee member) / Mclaren, Alexander (Committee member) / Vernon, Brent (Committee member) / McLemore, Ryan (Committee member) / Arizona State University (Publisher)
Created2012
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133192-Thumbnail Image.png
Description
At Arizona State University, the Disability Resource Center provides disabled students transportation around campus. This transportation service known as DART is composed of approximately 20 student workers and 9 carts that pick riders up based on pre-determined pick-up times and locations. With the current system, the scheduling of drivers to

At Arizona State University, the Disability Resource Center provides disabled students transportation around campus. This transportation service known as DART is composed of approximately 20 student workers and 9 carts that pick riders up based on pre-determined pick-up times and locations. With the current system, the scheduling of drivers to riders is inefficient, and in response, a tool was developed to schedule the rides in a faster manner. A demonstration of the new tool resulted in a time reduction of 98%.
ContributorsFranke, Alexandra Nicole (Author) / Clough, Michael (Thesis director) / Jennings, Cheryl (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
135244-Thumbnail Image.png
Description
Biofilm derived orthopedic infections are increasingly common after contamination of an open bone fracture or the surgical site pre- and post-orthopedic prosthetic insertion or removal. These infections are usually difficult to eradicate due to the resistant nature of biofilms to antimicrobial therapy. Difficulty of treatment of biofilm derived infections is

Biofilm derived orthopedic infections are increasingly common after contamination of an open bone fracture or the surgical site pre- and post-orthopedic prosthetic insertion or removal. These infections are usually difficult to eradicate due to the resistant nature of biofilms to antimicrobial therapy. Difficulty of treatment of biofilm derived infections is also partly due to the presence of persister cells in the biofilm matrix. Persister cells are tolerant to antimicrobial therapy delivered via the systemic route. It is thus possible for these cells to repopulate their environment once systemic antimicrobial delivery is discontinued. The antimicrobial concentration required to eradicate bacterial biofilms, minimum biofilm eradication concentration (MBEC), can be determined in vitro by exposing biofilms to different regimens of antimicrobial solutions. Previous studies have demonstrated that values of the MBEC vary depending on the material and surface the biofilm grows on. This study investigated the relationship between antimicrobial susceptibility and antimicrobial exposure time, and the effects of surface material type on the antimicrobial susceptibility of staphylococcal biofilms. It was concluded that antimicrobial susceptibility increases with increased antimicrobial exposure time, and that the investigated surface and material properties did not have an effect on the susceptibility of staphylococcal biofilms to antimicrobial therapy. Further investigation is however necessary to confirm these results due to some inconsistent data obtained over the course of the trials.
ContributorsTavaziva, Gamuchirai Clinton (Author) / Vernon, Brent (Thesis director) / Overstreet, Derek (Committee member) / Castaneda, Paulo (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133125-Thumbnail Image.png
Description

Project management is the crucial component for managing and mitigating the inherent risks associated with changes in technology and innovation. The procedures to track the schedule, budget, and scope of various projects in the standard worlds of engineering, manufacturing, construction, etc., are essential elements to the success of the project.

Project management is the crucial component for managing and mitigating the inherent risks associated with changes in technology and innovation. The procedures to track the schedule, budget, and scope of various projects in the standard worlds of engineering, manufacturing, construction, etc., are essential elements to the success of the project. Cost overruns, schedule changes, and other natural risks must be managed effectively. But what happens when a project manager is tasked with delivering an attraction that needs to withstand harsh weather conditions, and millions of people enjoying it every year, for a company with arguably the highest standards for quality and guest satisfaction? This would describe the project managers at Walt Disney Imagineering (WDI) and the projects they oversee have tight budgets, aggressive schedules and require a bit more pixie dust than other engineering projects. However, the universal truth is that no matter the size or the scope of the endeavor, project management processes are absolutely essential to ensuring that every team member can effectively collaborate to deliver the best product.

ContributorsBaker, Molly (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132984-Thumbnail Image.png
Description
The listing price of residential rental real estate is dependent upon property specific attributes. These attributes involve data that can be tabulated as categorical and continuous predictors. The forecasting model presented in this paper is developed using publicly available, property specific information sourced from the Zillow and Trulia online real

The listing price of residential rental real estate is dependent upon property specific attributes. These attributes involve data that can be tabulated as categorical and continuous predictors. The forecasting model presented in this paper is developed using publicly available, property specific information sourced from the Zillow and Trulia online real estate databases. The following fifteen predictors were tracked for forty-eight rental listings in the 85281 area code: housing type, square footage, number of baths, number of bedrooms, distance to Arizona State University’s Tempe Campus, crime level of the neighborhood, median age range of the neighborhood population, percentage of the neighborhood population that is married, median year of construction of the neighborhood, percentage of the population commuting longer than thirty minutes, percentage of neighborhood homes occupied by renters, percentage of the population commuting by transit, and the number of restaurants, grocery stores, and nightlife within a one mile radius of the property. Through regression analysis, the significant predictors of the listing price of a rental property in the 85281 area code were discerned. These predictors were used to form a forecasting model. This forecasting model explains 75.5% of the variation in listing prices of residential rental real estate in the 85281 area code.
ContributorsSchuchter, Grant (Author) / Clough, Michael (Thesis director) / Escobedo, Adolfo (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133019-Thumbnail Image.png
Description
This study aims to explore the prevalence of smartphone, smartwatch, and fitness tracker ownership among college students, and compare the popularity of each device in tracking health-related habits such as physical activity, eating, and sleep. In addition, this study aims to analyze the effectiveness of each device for achieving personal

This study aims to explore the prevalence of smartphone, smartwatch, and fitness tracker ownership among college students, and compare the popularity of each device in tracking health-related habits such as physical activity, eating, and sleep. In addition, this study aims to analyze the effectiveness of each device for achieving personal health goals in all three categories. Research for this study was conducted using an Institutional Review Board (IRB) approved survey that was distributed electronically to various Greek and student organizations around Arizona State University campuses. In total, 183 responses were considered, with participants ranging from ages 18 to 23. Participants were required to own or possess a smartphone to be eligible to complete the survey. After seven days of data collection, the results were then analyzed using Qualtrics. The results revealed that smartwatch and fitness tracker ownership is not prevalent within the Arizona State University demographic. In addition, after comparing device popularity across each habit-tracking category, it is apparent that the smartphone is the most used device for tracking. Finally, when looking at device effectiveness in relation to achieving health goals, smartwatches consistently scored higher than smartphones. Supplemental research should be conducted to further explore the prevalence and effectiveness of habit tracking. This research should include a larger sample size and a more evenly spread gender demographic.
ContributorsMeyer, Allison Hope (Author) / Levinson, Simin (Thesis director) / Carr, Natasha (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
155759-Thumbnail Image.png
Description
Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which could deter governments from implementing this strategy. In this sense, the development of innovative tools to support large-scale cost-efficient CCS

Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which could deter governments from implementing this strategy. In this sense, the development of innovative tools to support large-scale cost-efficient CCS deployment decisions is critical for climate change mitigation. This thesis proposes an improved mathematical formulation for the scalable infrastructure model for CCS (SimCCS), whose main objective is to design a minimum-cost pipe network to capture, transport, and store a target amount of CO2. Model decisions include source, reservoir, and pipe selection, as well as CO2 amounts to capture, store, and transport. By studying the SimCCS optimal solution and the subjacent network topology, new valid inequalities (VI) are proposed to strengthen the existing mathematical formulation. These constraints seek to improve the quality of the linear relaxation solutions in the branch and bound algorithm used to solve SimCCS. Each VI is explained with its intuitive description, mathematical structure and examples of resulting improvements. Further, all VIs are validated by assessing the impact of their elimination from the new formulation. The validated new formulation solves the 72-nodes Alberta problem up to 7 times faster than the original model. The upgraded model reduces the computation time required to solve SimCCS in 72% of randomly generated test instances, solving SimCCS up to 200 times faster. These formulations can be tested and then applied to enhance variants of the SimCCS and general fixed-charge network flow problems. Finally, an experience from testing a Benders decomposition approach for SimCCS is discussed and future scope of probable efficient solution-methods is outlined.
ContributorsLobo, Loy Joseph (Author) / Sefair, Jorge A (Thesis advisor) / Escobedo, Adolfo (Committee member) / Kuby, Michael (Committee member) / Middleton, Richard (Committee member) / Arizona State University (Publisher)
Created2017