Matching Items (126)
132015-Thumbnail Image.png
Description
The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used

The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used to improve functional outcomes in the gait rehabilitation process. The ankle push-off phase of an individual’s gait is vital to their ability to walk and propel themselves forward. During the ankle push-off phase of walking, plantar flexors are required to providing a large amount of force to power the heel off the ground.

The purpose of this project is to improve upon the passive ankle foot orthosis originally designed in the ASU’s Robotics and Intelligent Systems Laboratory (RISE Lab). This device utilizes springs positioned parallel to the user’s Achilles tendon which store energy to be released during the push off phase of the user’s gait cycle. Goals of the project are to improve the speed and reliability of the ratchet and pawl mechanism, design the device to fit a wider range of shoe sizes, and reduce the overall mass and size of the device. The resulting system is semi-passive and only utilizes a single solenoid to unlock the ratcheting mechanism when the spring’s potential force is required. The device created also utilizes constant force springs rather than traditional linear springs which allows for a more predictable level of force. A healthy user tested the device on a treadmill and surface electromyography (sEMG) sensors were placed on the user’s plantar flexor muscles to monitor potential reductions in muscular activity resulting from the assistance provided by the AFO device. The data demonstrates the robotic shoe was able to assist during the heel-off stage and reduced activation in the plantar flexor muscles was evident from the EMG data collected. As this is an ongoing research project, this thesis will also recommend possible design upgrades and changes to be made to the device in the future. These upgrades include utilizing a carbon fiber or lightweight plastic frame such as many of the traditional ankle foot-orthosis sold today and introducing a system to regulate the amount of spring force applied as a function of the force required at specific times of the heel off gait phase.
ContributorsSchaller, Marcus Frank (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132129-Thumbnail Image.png
Description
The sense of sight is arguably the most common method that our body uses for gathering data of the world around us. However, that primary tool is negated for those who are visually impaired, and thus must be replaced with a new bodily sense. Over the years there have been

The sense of sight is arguably the most common method that our body uses for gathering data of the world around us. However, that primary tool is negated for those who are visually impaired, and thus must be replaced with a new bodily sense. Over the years there have been multiple attempts to determine the second best sense from which the brain can generate the most information, and to create a device that utilizes that sense to gather and relay the data quickly and efficiently. However, the sense that has gained the most favor among users and the most experimentation is that of touch. A haptic display device employs the sense of touch by breaking down an image viewed by the haptic display into pixels; each pixel is then translated to a certain vibrational frequency or electrical charge for the user to feel (depending on the brightness of the pixel). One can then distinguish the feeling of the square-like object through the device, however the main problem that exists among the current haptic display devices is the low-resolution output. The low resolution thus makes it difficult for a user to decipher between objects that share a similar shape, but are still completely different.

By considering a different method of delivering information to the brain via touch, it may become possible to create a haptic display that can relay environmental information to the brain in 64x64 resolution. The alternative solution is to replace the vibrating motors with vibrating cantilever beams, thus allowing more beams to take up a specific area in comparison to vibrating motors. Each beam will vary in length to establish its own natural frequency while also making it easier for each beam’s vibration to be controlled by a single microcontroller. Nathan Eastburn, a student who graduated in the spring of 2018, designed a wire-cutting machine that could pull the beams through a metal plate to strip the beam into smaller cross-sections and cut the beams into the very precise lengths. To further complete the machine, the mechanical aspects of the machine needed to be finalized and installed, specifically the air cylinder valve and blade attachments.

The following report provides the details and thought process in converting the given designs of the air pump and blade systems into the physical additions to the wire-cutting machine. Both systems have further parts that need to be purchased, components that must be manufactured, and/or redesigns to the functionality of the systems; these will be explained for those desiring to continue and complete the assembly of this machine.
ContributorsGarcia, Aundre (Author) / Sodemann, Angela (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132311-Thumbnail Image.png
Description
Currently, medical errors are one of the most common causes of death in the United
States (Makary & Daniel, 2016), which includes errors related to look-alike, sound-alike prescription drug name confusion. The use of Tall Man lettering, a text enhancement style that capitalizes the dissimilar portions of words, has been recommended

Currently, medical errors are one of the most common causes of death in the United
States (Makary & Daniel, 2016), which includes errors related to look-alike, sound-alike prescription drug name confusion. The use of Tall Man lettering, a text enhancement style that capitalizes the dissimilar portions of words, has been recommended by the US Food and Drug Administration (FDA) as well as the Institute for Safe Medication Practices (ISMP) since 2008 in order to make it easier for healthcare professionals to distinguish and identify two otherwise easily confusable drug names. Research performed on the efficacy of Tall Man lettering and similar text enhancements in successfully differentiating look-alike, sound-alike drug names has thus far been either null or inconclusive. Therefore, it is crucial that further research be conducted in order to provide a path to alleviation by increasing the understanding of the problem, and providing evidence to a clearer solution (Lambert, Schroeder & Galanter, 2015). The objective of the current study was to measure the efficacy of Tall Man Lettering and additional text enhancement strategies through an experiment that replicates some of the previously used methods of research. The current study utilized a repeated measures design. Participants were shown a prime drug name, followed by a brief mask, and then either the same drug name or its confusable drug name pair. They were then asked to identify whether the two drug names presented were identical or different. All of the participants completed a total of four trials representing each condition (regular, Tall Man, Tall Man Bold, highlight) and a practice trial. Overall performance was measured through accuracy and reaction time, which revealed that regular, lowercase text was more effective than any of the other text enhancements, including Tall Man lettering, in quickly and accurately identifying differences in drug names. These results seem to add to the body of inconclusive research on the efficacy of Tall Man lettering and similar text enhancement strategies for reducing drug name confusion. Given the significant impact that drug name confusion errors can have on patient safety, it is imperative that further research be conducted in order to give a more definitive answer of whether text enhancement strategies like Tall Man lettering are helpful in practice.
ContributorsThompson, Alyssa Brianna (Author) / Branaghan, Russell (Thesis director) / Gutzwiller, Robert (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132203-Thumbnail Image.png
Description
This creative project is a children’s book designed to teach young readers about engineering through a fictional story about a group of children creating a robot for their school’s show-and-tell. The story aims to teach engineering principles to children in a lighthearted and entertaining form, narrating notions such as the

This creative project is a children’s book designed to teach young readers about engineering through a fictional story about a group of children creating a robot for their school’s show-and-tell. The story aims to teach engineering principles to children in a lighthearted and entertaining form, narrating notions such as the design process, prototyping, specialty fields, and repurposing. Other principles such as learning patience, compromise and teamwork are also conveyed throughout the plot details. Small life lessons that transcend the realm of engineering are also embodied throughout. The plot of the story is a young girl who goes to visit her grandfather who is a garage tinkerer with a love of spare parts. He tells her about his job as a robotics engineer, and she loves it. She goes and tells her friends who decide they want to make a robot for show-and-tell at school. The grandfather agrees to help them build a robot and thus the group of kids are walked through the engineering design process, learning new things (and specialization) along the way. The story ends by revealing that the whole story was a flashback the main character was having as she is about to start her first day at an engineering firm.
ContributorsReed, Shelby Marie (Author) / Oberle, Eric (Thesis director) / Williams, Wendy (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132352-Thumbnail Image.png
Description
This is a report on an experiment that examines if the principles of multimedia learning outlined in Richard E. Mayer’s journal article, “Using multimedia for e-learning”, located in the Journal of Computer Assisted Learning would apply to haptic feedback used for haptic robotic operation. This was tested by developing

This is a report on an experiment that examines if the principles of multimedia learning outlined in Richard E. Mayer’s journal article, “Using multimedia for e-learning”, located in the Journal of Computer Assisted Learning would apply to haptic feedback used for haptic robotic operation. This was tested by developing and using a haptic robotic manipulator known as the Haptic Testbed (HTB). The HTB is a manipulator designed to emulate human hand movement for haptic testing purposes and features an index finger and thumb for the right hand. Control is conducted through a Leap Motion Controller, a visual sensor that uses infrared lights and cameras to gather various data about hands it can see. The goal of the experiment was to have test subjects complete a task where they shifted objects along a circuit of positions where they were measured on time to complete the circuit as well as accuracy in reaching the individual points. Analysis of subject responses to surveys as well as performance during the experiment showed haptic feedback during training improving initial performance of individuals as well as lowering mental effort and mental demand during said training. The findings of this experiment showed support for the hypothesis that Mayer’s principles do apply to haptic feedback in training for haptic robotic manipulation. One of the implications of this experiment would be the possibility for haptics and tactile senses to be an applicable sense for Mayer’s principles of multimedia learning as most of the current work in the field is mostly focused on visual or auditory senses. If the results of the experiment were replicated in a future experiment it would provide support to the hypothesis that the principles of multimedia learning can be utilized to improve the training of haptic robotic operation.
ContributorsGiam, Connor Dallas (Author) / Craig, Scotty (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132369-Thumbnail Image.png
Description
Research studies on improving Automated Driving Systems (ADS) have focused mainly on enhancing safety, through the development of more sophisticated sensors that have the ability to detect objects promptly. Safety is indeed a priority especially when the public has raised concerns regarding unmanned vehicles failing to make informed decisions in

Research studies on improving Automated Driving Systems (ADS) have focused mainly on enhancing safety, through the development of more sophisticated sensors that have the ability to detect objects promptly. Safety is indeed a priority especially when the public has raised concerns regarding unmanned vehicles failing to make informed decisions in unforeseen situations, for example, the Uber Automated Vehicle (AV) crash that happened in Arizona, in 2018 (Griggs & Wakabayashi, 2018). However, one question still remains suppositious: How will the continuous development of AVs impact carbon emissions and energy consumption? Since many automakers claim that automated driving is part of the future of mobility, there is a possibility that automated driving could promote the use of alternative clean fuels like electric batteries and support further travels with the least amount of energy. Therefore, this paper discusses how new ADS technologies with energy-saving benefits, will enable multiple levels of vehicle autonomy to perform efficiently and cause less environmental impacts. In addition, this paper discusses prospective developments in other industries, that could emerge to compliment the next generation ADS technologies and also help decrease the global energy demand that is projected to increase by some 28 percent between now and the year 2040 (“EIA projects 28% increase in world energy use by 2040 - Today in Energy - U.S. Energy Information Administration (EIA),” n.d.)
ContributorsSinyangwe, Stephano Kapya (Author) / Wishart, Jeffrey (Thesis director) / Yan, Chen (Committee member) / Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131772-Thumbnail Image.png
Description
The purpose of this review is to determine how to measure and assess human trust in medical technology. A systematic literature review was selected as the path to understand the landscape for measuring trust up to this point. I started by creating a method of systematically reading through related studies

The purpose of this review is to determine how to measure and assess human trust in medical technology. A systematic literature review was selected as the path to understand the landscape for measuring trust up to this point. I started by creating a method of systematically reading through related studies in databases before summarizing results and concluding with a recommended design for the upcoming study. This required searching several databases and learning each advanced search methods for each in order to determine which databases provided the most relevant results. From there, the reader examined the results, keeping track in a spreadsheet. The first pass through filtered out the results which did not include detailed methods of measuring trust. The second pass took detailed notes on the remaining studies, keeping track of authors, participants, subjects, methods, instruments, issues, limitations, analytics, and validation. After summarizing the results, discussing trends in the results, and mentioning limitations a conclusion was devised. The recommendation is to use an uncompressed self-reported questionnaire with 4-10 questions on a six-point-Likert scale with reversing scales throughout. Though the studies analyzed were specific to medical settings, this method can work outside of the medical setting for measuring human trust.
ContributorsGaugler, Grady (Author) / Chiou, Erin (Thesis director) / Craig, Scotty (Committee member) / Dean, Herberger Institute for Design and the Arts (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131588-Thumbnail Image.png
Description
All around the automotive industry, the chassis dynamometer exists in a variety of configurations but all function to provide one common goal. The underlying goal is to measure a vehicle’s performance by measuring torque output and taking that measurement to calculate horsepower. This data is crucial in situations of testing

All around the automotive industry, the chassis dynamometer exists in a variety of configurations but all function to provide one common goal. The underlying goal is to measure a vehicle’s performance by measuring torque output and taking that measurement to calculate horsepower. This data is crucial in situations of testing development vehicles or for tuning heavily modified vehicles. While the current models in the industry serve their purposes for what they were intended to do, in theory, an additional system can be introduced to the dyno to render the system into an electric generator.
The hardware will consist of electric motors functioning as a generator by reversing the rotation of the motor (regenerative braking). Using the dynamometer with the additional motor system paired with a local battery, the entire system can be run off by their tuning service. When considering the Dynojet and Dynapack dynamometer, it was calculated that an estimated return of 81.5% of electricity used can be generated. Different factors such as how frequent the dyno is used and for how long affect the savings. With a generous estimate of 6 hours dyno run time a day for 250 business days and the cost of electricity being 13.19 cents/kwh the Dynapack came out to $326.45 a year and $1424.52 for the Dynojet. With the return of electricity, the amount saved comes out to $266.18 for the Dynapack and $1161.50 for the Dynojet. This will alleviate electrical costs dramatically in the long term allowing for performance shops to invest their saved money into more tools and equipment.
ContributorsCrisostomo, Ryan-Xavier Eddie (Author) / Contes, James (Thesis director) / Wishart, Jeffrey (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131607-Thumbnail Image.png
Description
The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State

The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State University’s former EcoCAR. The LiDAR localization techniques include the NDT Mapping and Matching algorithms from the open-source autonomous vehicle platform, Autoware. The mapping algorithm was supplemented by that of Google Cartographer due to the limitations of map size in Autoware’s algorithms. The Model Predictive Control for waypoint following and the computer-microcontroller-actuator communication line are described. In addition to this experimental work, the thesis discusses an investigation of alternative approaches for each problem.
ContributorsCopenhaver, Bryce Stone (Author) / Berman, Spring (Thesis director) / Yong, Sze Zheng (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131618-Thumbnail Image.png
Description
A phenomenon of intense transmission of light has been observed from optical response to subwavelength structures in metal film. Using numerical simulation, an incident plane wave propagates toward a thin film of silver with a subwavelength slit and groove. This thesis explores parameters, such as slit-groove distance, location of placed

A phenomenon of intense transmission of light has been observed from optical response to subwavelength structures in metal film. Using numerical simulation, an incident plane wave propagates toward a thin film of silver with a subwavelength slit and groove. This thesis explores parameters, such as slit-groove distance, location of placed molecules, and molecule resonance, which affect the transmission of light through the slit. It is shown how the eigenenergies of the system vary with slit-groove distance. Two scenarios were investigated; a) molecules placed inside groove and b) molecules placed inside slit. It is found that the most dramatic effect on transmission by molecules is with molecules inside slit.
ContributorsGilbert, Alia (Author) / Sukharev, Maxim (Thesis director) / Martin, Thomas (Committee member) / Engineering Programs (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05