Matching Items (52)
155699-Thumbnail Image.png
Description
Pseudo-steady state (PSS) flow is an important time-dependent flow regime that

quickly follows the initial transient flow regime in the constant-rate production of

a closed boundary hydrocarbon reservoir. The characterization of the PSS flow

regime is of importance in describing the reservoir pressure distribution as well as the

productivity index (PI) of the flow

Pseudo-steady state (PSS) flow is an important time-dependent flow regime that

quickly follows the initial transient flow regime in the constant-rate production of

a closed boundary hydrocarbon reservoir. The characterization of the PSS flow

regime is of importance in describing the reservoir pressure distribution as well as the

productivity index (PI) of the flow regime. The PI describes the production potential

of the well and is often used in fracture optimization and production-rate decline

analysis. In 2016, Chen determined the exact analytical solution for PSS flow of a

fully penetrated vertically fractured well with finite fracture conductivity for reservoirs

of elliptical shape. The present work aimed to expand Chen’s exact analytical solution

to commonly encountered reservoirs geometries including rectangular, rhomboid,

and triangular by introducing respective shape factors generated from extensive

computational modeling studies based on an identical drainage area assumption. The

aforementioned shape factors were generated and characterized as functions for use

in spreadsheet calculations as well as graphical format for simplistic in-field look-up

use. Demonstrative use of the shape factors for over 20 additional simulations showed

high fidelity of the shape factor to accurately predict (mean average percentage error

remained under 1.5 %) the true PSS constant by modulating Chen’s solution for

elliptical reservoirs. The methodology of the shape factor generation lays the ground

work for more extensive and specific shape factors to be generated for cases such as

non-concentric wells and other geometries not studied.
ContributorsSharma, Ankush, M.S (Author) / Chen, Kang Ping (Thesis advisor) / Green, Matthew D (Thesis advisor) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017
155424-Thumbnail Image.png
Description
The accurate and fast determination of organic air pollutants for many applications and studies is critical. Exposure to volatile organic compounds (VOCs) has become an important public health concern, which may induce a lot of health effects such as respiratory irritation, headaches and dizziness. In order to monitor the personal

The accurate and fast determination of organic air pollutants for many applications and studies is critical. Exposure to volatile organic compounds (VOCs) has become an important public health concern, which may induce a lot of health effects such as respiratory irritation, headaches and dizziness. In order to monitor the personal VOCs exposure level at point-of-care, a wearable real time monitor for VOCs detection is necessary. For it to be useful in real world application, it requires low cost, small size and weight, low power consumption, high sensitivity and selectivity.

To meet these requirements, a novel mobile device for personal VOCs exposure monitor has been developed. The key sensing element is a disposable molecularly imprinted polymer based quartz tuning fork resonator. The sensor and fabrication protocol are low cost, reproducible and stable. Characterization on the sensing material and device has been done. Comparisons with gold standards in the field such as GC-MS have been conducted. And the device’s functionality and capability have been validated in field tests, proving that it’s a great tool for VOCs monitoring under different scenarios.
ContributorsDeng, Yue, Ph.D (Author) / Forzani, Erica S (Thesis advisor) / Lind, Mary L (Committee member) / Mu, Bin (Committee member) / LaBelle, Jeffery (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017
135471-Thumbnail Image.png
Description
Current robotic systems are limited in their abilities to efficiently traverse granular environments due to an underdeveloped understanding of the physics governing the interactions between solids and deformable substrates. As there are many animal species biologically designed for navigation of specific terrains, it is useful to study their mechanical ground

Current robotic systems are limited in their abilities to efficiently traverse granular environments due to an underdeveloped understanding of the physics governing the interactions between solids and deformable substrates. As there are many animal species biologically designed for navigation of specific terrains, it is useful to study their mechanical ground interactions, and the kinematics of their movement. To achieve this, an automated, fluidized bed was designed to simulate various terrains under different conditions for animal testing. This document examines the design process of this test setup, with a focus on the controls. Control programs will be tested with hardware to ensure full functionality of the design. Knowledge gained from these studies can be used to optimize morphologies and gait parameters of robots. Ultimately, a robot can be developed that is capable of adapting itself for efficient locomotion on any terrain. These systems will be invaluable for applications such as planet exploration and rescue operations.
ContributorsHarvey, Carolyn Jean (Author) / Marvi, Hamidreza (Thesis director) / Emady, Heather (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148451-Thumbnail Image.png
Description

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU;

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU; however, the design of the rotary drum used in these studies is restrictive and experiments using radiation heat transfer have not been possible.<br/><br/>This study focuses on recounting the steps taken to upgrade the rotary drum setup and detailing the recommended procedure for experimental tests using radiant heat transfer upon completed construction of the new setup. To develop an improved rotary drum setup, flaws in the original design were analyzed and resolved. This process resulted in a redesigned drum heating system, an altered thinner drum, and a larger drum box. The recommended procedure for radiant heat transfer tests is focused on determining how particle size, drum fill level, and drum rotation rate impact the radiant heat transfer rate.

ContributorsMiller, Erik R (Author) / Emady, Heather (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This thesis analyzed Canon GPR-30 Black Standard Yield Toner in hopes to gain better understanding of the additives and plastic used in a popular photocopier toner formulation. By analyzing the toner’s composition from the perspective of its recyclability and potential to be manufactured using recycled plastic, this thesis hoped to

This thesis analyzed Canon GPR-30 Black Standard Yield Toner in hopes to gain better understanding of the additives and plastic used in a popular photocopier toner formulation. By analyzing the toner’s composition from the perspective of its recyclability and potential to be manufactured using recycled plastic, this thesis hoped to fill a gap in current literature regarding how toner fits into a circular economy. While the analysis of the selected toner was ultimately inconclusive, three hypotheses about the toner’s composition are put forth based upon data from differential scanning calorimetry (DSC), solubility analysis, and Fourier Transform Infrared (FTIR) spectroscopy experimentation. It is hypothesized that the toner is most likely composed of either polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET). Both of these polymers have characteristic FTIR peaks that were exhibited in the toner spectra and both polymers exhibit similar solubility behavior to toner samples. However, the glass transition temperature and melting temperature of the toner sampled were 58℃ and 74.5℃ respectively, both of which are much lower than that of PMMA and PET. Thus, a third hypothesis that would better support DSC findings is that the toner is primarily composed of nylon 6,6. While DSC data best matches this polymer, FTIR data seems to rule out nylon 6,6 as an option because its characteristic peaks were not found in experimental data. Thus, the Canon GPR-30 Black Standard Yield Toner is probably made from either PMMA or PET. Both PMMA and PET are 100% recyclable plastics which are commonly repurposed at recycling facilities, however, unknowns regarding toner additives make it difficult to determine how this toner would be recycled. If the printing industry hopes to move towards a circular economy in which plastic can be recycled to use towards toner manufacturing and toner can be “unprinted” from paper to be recycled into new toner, it is likely that monetary incentives or government regulations will need to be introduced to promote the sharing of toner formulations for recycling purposes.
ContributorsChase, Jasmine (Author) / Green, Matthew (Thesis director) / Emady, Heather (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
ContributorsChase, Jasmine (Author) / Green, Matthew (Thesis director) / Emady, Heather (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
187751-Thumbnail Image.png
Description
The purpose of this study was to comprehend the global warming potential (GWP), cost variability, and competitiveness of steel with rising carbon taxes. Aluminum, glass fiber composite, and carbon fiber composite were chosen as competing materials. In order to compare the aforementioned factors, the GWP of several processes to produce

The purpose of this study was to comprehend the global warming potential (GWP), cost variability, and competitiveness of steel with rising carbon taxes. Aluminum, glass fiber composite, and carbon fiber composite were chosen as competing materials. In order to compare the aforementioned factors, the GWP of several processes to produce steel, aluminum, and fiber composites was examined. Cost analyses of various methods were also carried out to determine their viability. Energy consumption data for each of the paths under consideration were taken from the literature for the study. To get the consistent GWP for traditional and decarbonized scenarios, the required energy is multiplied with corresponding energy source (natural gas or electricity). Even after accounting for the carbon tax and the weight-reduction factor, the results show that steel still has the lowest production costs, followed by aluminum, while fiber composites remain the most costly. EAF- steel and secondary aluminum has least GWP followed by H2-DRI (Hydrogen- Direct Reduced Iron)steel and NG-DRI (Natural Gas- Direct Reduced Iron) steel with carbon capture and storage (CCS). The state of art technology for glass fiber reinforced composite also emits less carbon dioxide but the cost of production is still high. Carbon fiber reinforced composite emits most carbon dioxide and is least economical.
ContributorsRajulwar, Vaishnavi Vijay (Author) / Seetharaman, Sridhar (Thesis advisor) / Emady, Heather (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2023
189276-Thumbnail Image.png
Description
Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using

Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using octylamine, dodecylamine and hexadecylamine. Initial reactions with the three amines were performed with and without EG to observe and compare the terephthalamides obtained from these reactions to test this hypothesis. Various reaction conditions like concentration of reactants, temperature and time of reaction were later considered and employed to find the optimal conditions for the depolymerization of PET before confirming the catalytic properties of EG in the aminolysis reaction. The depolymerized products were subjected to attenuated total reflectance-infrared spectroscopy (ATR-IR Spectroscopy) to check for presence of important amide and ester peaks through their infrared absorption peaks, thermogravimetric analysis (TGA) to find their Td5 temperatures and differential scanning calorimetry (DSC) to check for endothermic melting temperature of the obtained products. These characterization techniques were used to understand, examine, and compare the different properties of the products obtained from different reaction mixtures. The three distinct amines considered for this reaction also showed differences in the conversion rate of PET under similar reaction conditions thus signifying the importance of selecting an appropriate amine reactant for the aminolysis process. Finally, the in-situ IR probe was used to determine the reaction kinetics of the aminolysis reaction and the formation and loss of products and reactants with time.
ContributorsBakkireddy, Adarsh (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S. (Committee member) / Arizona State University (Publisher)
Created2023
155660-Thumbnail Image.png
Description
This work describes the development of a device for measuring CO2 in breath, which has applications in monitoring a variety of health issues, such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and cardiovascular disease. The device takes advantage of colorimetric sensing technology in order to maintain a low cost and

This work describes the development of a device for measuring CO2 in breath, which has applications in monitoring a variety of health issues, such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and cardiovascular disease. The device takes advantage of colorimetric sensing technology in order to maintain a low cost and high user-friendliness. The sensor consists of a pH dye, reactive element, and base coated on a highly porous Teflon membrane. The transmittance of the sensor is measured in the device via a simple LED/photodiode system, along with the flow rate, ambient relative humidity, and barometric pressure. The flow is measured by a newly developed flow meter described in this work, the Confined Pitot Tube (CPT) flow meter, which provides a high accuracy with reduced flow-resistance with a standard differential pressure transducer. I demonstrate in this work that the system has a high sensitivity, high specificity, fast time-response, high reproducibility, and good stability. The sensor has a simple calibration method which requires no action by the user, and utilizes a sophisticated, yet lightweight, model in order to predict temperature changes on the sensor during breathing and track changes in water content. It is shown to be effective for measuring CO2 waveform parameters on a breath-by-breath basis, such as End-Tidal CO2, Alveolar Plateau Slope, and Beginning Exhalation Slope.
ContributorsBridgeman, Devon (Author) / Forzani, Erica S (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Holloway, Julianne (Committee member) / Raupp, Gregory (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017