Matching Items (80)
152182-Thumbnail Image.png
Description
There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water

There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water and sunlight. As a part of the photosynthetic electron transport chain (PETC) of the green algae Chlamydomonas reinhardtii, water is split via Photosystem II (PSII) and the electrons flow through a series of electron transfer cofactors in cytochrome b6f, plastocyanin and Photosystem I (PSI). The terminal electron acceptor of PSI is ferredoxin, from which electrons may be used to reduce NADP+ for metabolic purposes. Concomitant production of a H+ gradient allows production of energy for the cell. Under certain conditions and using the endogenous hydrogenase, excess protons and electrons from ferredoxin may be converted to molecular hydrogen. In this work it is demonstrated both that certain mutations near the quinone electron transfer cofactor in PSI can speed up electron transfer through the PETC, and also that a native [FeFe]-hydrogenase can be expressed in the C. reinhardtii chloroplast. Taken together, these research findings form the foundation for the design of a PSI-hydrogenase fusion for the direct and continuous photo-production of hydrogen in vivo.
ContributorsReifschneider, Kiera (Author) / Redding, Kevin (Thesis advisor) / Fromme, Petra (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2013
151380-Thumbnail Image.png
Description
Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and

Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and iron (yusV) were measured under various nutrient enrichment experiments. While results for nrgA and phoA were inconclusive, results for yusV showed an increase in expression with the addition of N and Fe. This is the first data that shows the impact of nutrients on siderophore uptake regulation in hot spring microbes.
ContributorsThorne, Michele (Author) / Elser, James J (Thesis advisor) / Touchman, Jeffrey (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2012
151456-Thumbnail Image.png
Description
The need for a renewable and sustainable light-driven energy source is the motivation for this work, which utilizes a challenging, yet practical and attainable bio-inspired approach to develop an artificial oxygen evolving complex, which builds upon the principles of the natural water splitting mechanism in oxygenic photosynthesis. In this work,

The need for a renewable and sustainable light-driven energy source is the motivation for this work, which utilizes a challenging, yet practical and attainable bio-inspired approach to develop an artificial oxygen evolving complex, which builds upon the principles of the natural water splitting mechanism in oxygenic photosynthesis. In this work, a stable framework consisting of a three-dimensional DNA tetrahedron has been used for the design of a bio-mimic of the Oxygen-Evolving Complex (OEC) found in natural Photosystem II (PSII). PSII is a large protein complex that evolves all the oxygen in the atmosphere, but it cannot be used directly in artificial systems, as the light reactions lead to damage of one of Photosystem II's core proteins, D1, which has to be replaced every half hour in the presence of sunlight. The final goal of the project aims to build the catalytic center of the OEC, including the Mn4CaCl metal cluster and its protein environment in the stable DNA framework of a tetrahedron, which can subsequently be connected to a photo-stable artificial reaction center that performs light-induced charge separation. Regions of the peptide sequences containing Mn4CaCl ligation sites are implemented in the design of the aOEC (artificial oxygen-evolving complex) and are attached to sites within the tetrahedron to facilitate assembly. Crystals of the tetrahedron have been obtained, and X-ray crystallography has been used for characterization. As a proof of concept, metal-binding peptides have been coupled to the DNA tetrahedron which allowed metal-containing porphyrins, specifically Fe(III) meso-Tetra(4-sulfonatophenyl) porphyrin chloride, to be encapsulated inside the DNA-tetrahedron. The porphyrins were successfully assembled inside the tetrahedron through coordination of two terminal histidines from the orthogonally oriented peptides covalently attached to the DNA. The assembly has been characterized using Electron Paramagnetic Resonance (EPR), optical spectroscopy, Dynamic Light Scattering (DLS), and x-ray crystallography. The results reveal that the spin state of the metal, iron (III), switches during assembly from the high-spin state to low-spin state.
ContributorsRendek, Kimberly Nicole (Author) / Fromme, Petra (Thesis advisor) / Chen, Julian (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
152591-Thumbnail Image.png
Description
The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability)

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability) and soil structure in mesic- and agro- ecosystems. Despite the empirical and theoretical strides made in soil ecology over the last few decades, questions regarding ecosystem function and soil processes remain, especially for arid areas. Arid areas have unique ecosystem biogeochemistry, decomposition processes, and soil microbial responses to moisture inputs that deviate from predictions derived using data generated in more mesic systems. For example, current paradigm predicts that soil microbes will respond positively to increasing moisture inputs in a water-limited environment, yet data collected in arid regions are not congruent with this hypothesis. The influence of abiotic factors on litter decomposition rates (e.g., photodegradation), litter quality and availability, soil moisture pulse size, and resulting feedbacks on detrital food web structure must be explicitly considered for advancing our understanding of arid land ecology. However, empirical data coupling arid belowground food webs and ecosystem processes are lacking. My dissertation explores the resource controls (soil organic matter and soil moisture) on food web network structure, size, and presence/absence of expected belowground trophic groups across a variety of sites in Arizona.
ContributorsWyant, Karl Arthur (Author) / Sabo, John L (Thesis advisor) / Elser, James J (Committee member) / Childers, Daniel L. (Committee member) / Hall, Sharon J (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2014
152672-Thumbnail Image.png
Description
Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the L.HI genome - Since this is a newly discovered cyanobacterium, its genome was not previously elucidated. Illumina sequencing, a type of next generation sequencing (NGS) technology was employed to sequence the genome. Unfortunately, the natural isolate contained other contaminating and potentially symbiotic bacterial populations. A novel bioinformatics strategy for separating DNA from contaminating bacterial populations from that of L.HI was devised which involves a combination of tetranucleotide frequency, %(G+C), BLAST analysis and gene annotation. 2) Structural elucidation of phycoerythrin - Phycoerythrin is the most important protein in the PBS assembly because it is one of the few light harvesting proteins which absorbs green light. The protein was crystallized and its structure solved to a resolution of 2Å. This protein contains two chemically distinct types of chromophores: phycourobilin and phycoerythrobilin. Energy transfer calculations indicate that there is unidirectional flow of energy from phycourobilin to phycoerythrobilin. Energy transfer time constants using Forster energy transfer theory have been found to be consistent with experimental data available in literature. 3) Effect of chromatic acclimation on photosystems - Chromatic acclimation is a phenomenon in which an organism modulates the ratio of PE/PC with change in light conditions. Our investigation in case of L.HI has revealed that the PE is expressed more in green light than PC in red light. This leads to unequal harvesting of light in these two states. Therefore, photosystem II expression is increased in red-light acclimatized cells coupled with an increase in number of PBS.
ContributorsPaul, Robin (Author) / Fromme, Petra (Thesis advisor) / Ros, Alexandra (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
152968-Thumbnail Image.png
Description
Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with

Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography.

This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process.
ContributorsKupitz, Christopher (Author) / Fromme, Petra (Thesis advisor) / Spence, John C. (Thesis advisor) / Redding, Kevin (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
152845-Thumbnail Image.png
Description
There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework

There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework that produce rich dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon, known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, needs to be incorporated into mathematical models. Here we present Lotka-Volterra type models to investigate the growth response of Daphnia to algae of varying P:C ratios. Using a nonsmooth system of two ordinary differential equations (ODEs), we formulate the first model to incorporate the phenomenon of the stoichiometric knife edge. We then extend this stoichiometric model by mechanistically deriving and tracking free P in the environment. This resulting full knife edge model is a nonsmooth system of three ODEs. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, leads to quantitatively different predictions than previous models that neglect to track free nutrients. The full model shows that the grazer population is sensitive to excess nutrient concentrations as a dynamical free nutrient pool induces extreme grazer population density changes. These modeling efforts provide insight on the effects of excess nutrient content on grazer dynamics and deepen our understanding of the effects of stoichiometry on the mechanisms governing population dynamics and the interactions between trophic levels.
ContributorsPeace, Angela (Author) / Kuang, Yang (Thesis advisor) / Elser, James J (Committee member) / Baer, Steven (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
152622-Thumbnail Image.png
Description
Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based

Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial catalytic centers. PNA-polypeptide conjugates were synthesized directly using microwave assisted solid phase synthesis or alternatively PNA linkers were conjugated to biologically expressed proteins using chemical crosslinking. The PNA-polypeptides hybridized to the preassembled DNA nanocage at room tempera-ture or 11 ⁰C and could be assembled in a stepwise fashion. Time resolved fluorescence anisotropy and gel electrophoresis were used to determine that a negatively charged az-urin protein was repelled outside of the negatively charged DNA nanocage, while a posi-tively charged cytochrome c protein was retained inside. Spectroelectrochemistry and an in-gel luminol oxidation assay demonstrated the cytochrome c protein remained active within the DNA nanocage and its redox potential decreased modestly by 10 mV due to the presence of the DNA nanocage. These results demonstrate the benign PNA assembly conditions are ideal for preserving polypeptide structure and function, and will facilitate the polypeptide-based assembly of artificial catalytic centers inside a stable DNA nanocage. A prospective application of assembling multiple cyclic γ-PNA-peptides to mimic the oxygen-evolving complex (OEC) catalytic active site from photosystem II (PSII) is described. In this way, the robust catalytic capacity of PSII could be utilized, without suffering the light-induced damage that occurs by the photoreactions within PSII via triplet state formation, which limits the efficiency of natural photosynthesis. There-fore, this strategy has the potential to revolutionize the process of designing and building robust catalysts by leveraging nature's recipes, and also providing a flexible and con-trolled artificial environment that might even improve them further towards commercial viability.
ContributorsFlory, Justin David (Author) / Fromme, Petra (Thesis advisor) / Yan, Hao (Committee member) / Buttry, Daniel (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2014
153480-Thumbnail Image.png
Description

Non-native consumers can significantly alter processes at the population, community, and ecosystem level, and they are a major concern in many aquatic systems. Although the community-level effects of non-native anuran tadpoles are well understood, their ecosystem-level effects have been less studied. Here, I tested the hypothesis that natural densities of

Non-native consumers can significantly alter processes at the population, community, and ecosystem level, and they are a major concern in many aquatic systems. Although the community-level effects of non-native anuran tadpoles are well understood, their ecosystem-level effects have been less studied. Here, I tested the hypothesis that natural densities of non-native bullfrog tadpoles (Lithobates catesbeianus) and native Woodhouse's toad tadpoles (Anaxyrus woodhousii) have dissimilar effects on aquatic ecosystem processes because of differences in grazing and nutrient recycling (excretion and egestion). I measured bullfrog and Woodhouse's carbon, nitrogen, and phosphorus nutrient recycling rates. Then, I determined the impact of tadpole grazing on periphyton biomass (chlorophyll a) during a 39-day mesocosm experiment. Using the same experiment, I also quantified the effect of tadpole grazing and nutrient excretion on periphyton net primary production (NPP). Lastly I measured how dissolved and particulate nutrient concentrations and respiration rates changed in the presence of the two tadpole species. Per unit biomass, I found that bullfrog and Woodhouse's tadpoles excreted nitrogen and phosphorus at similar rates, though Woodhouse's tadpoles egested more carbon, nitrogen, and phosphorus. However, bullfrogs recycled nutrients at higher N:C and N:P ratios. Tadpole excretion did not cause a detectable change in dissolved nutrient concentrations. However, the percent phosphorus in mesocosm detritus was significantly higher in both tadpole treatments, compared to a tadpole-free control. Neither tadpole species decreased periphyton biomass through grazing, although bullfrog nutrient excretion increased areal NPP. This result was due to higher biomass, not higher biomass-specific productivity. Woodhouse's tadpoles significantly decreased respiration in the mesocosm detritus, while bullfrog tadpoles had no effect. This research highlights functional differences between species by showing non-native bullfrog tadpoles and native Woodhouse's tadpoles may have different effects on arid, aquatic ecosystems. Specifically, it indicates bullfrog introductions may alter primary productivity and particulate nutrient dynamics.

ContributorsGreene, Robin (Author) / Sabo, John L (Thesis advisor) / Grimm, Nancy (Committee member) / Elser, James J (Committee member) / Arizona State University (Publisher)
Created2015
153309-Thumbnail Image.png
Description
Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we

Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we have generated new mutations in the PsaA and PsaB subunits near the electron transfer cofactor 2 (ec2 chlorophyll). PsaA-Asn604 accepts a hydrogen bond from the water molecule that is the axial ligand of ec2B and the case is similar for PsaB-Asn591 and ec2A. The second set of targeted sites was PsaA-Ala684 and PsaB-Ala664, whose methyl groups are present near ec2A and ec2B, respectively. We generated a number of mutants by targeting the selected protein residues. These mutations were expected to alter the energetics of the primary charge separation event.

The PsaA-A684N mutants exhibited increased ET on the B-branch as compared to the A-branch in both in vivo and in vitro conditions. The transient electron paramagnetic resonance (EPR) spectroscopy revealed the formation of increased B-side radical pair (RP) at ambient and cryogenic temperatures. The ultrafast transient absorption spectroscopy and fluorescence decay measurement of the PsaA-A684N and PsaB-A664N showed a slight deceleration of energy trapping. Thus making mutations near ec2 on each branch resulted into modulation of the charge separation process. In the second set of mutants, where ec2 cofactor was target by substitution of PsaA-Asn604 or PsaB-Asn591 to other amino acids, a drop in energy trapping was observed. The quantum yield of CS decreases in Asn to Leu and His mutants on the respective branch. The P700 triplet state was not observed at room and cryogenic temperature for these mutants, nor was a rapid decay of P700+ in the nanosecond timescale, indicating that the mutations do not cause a blockage of electron transfer from the ec3 Chl. Time-resolved fluorescence results showed a decrease in the lifetime of the energy trapping. We interpret this decrease in lifetime as a new channel of excitation energy decay, in which the untrapped energy dissipates as heat through a fast internal conversion process. Thus, a variety of spectroscopic measurements of PSI with point mutations near the ec2 cofactor further support that the ec2 cofactor is involved in energy trapping process.
ContributorsBadshah, Syed Lal (Author) / Redding, Kevin E (Thesis advisor) / Fromme, Petra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014