Matching Items (3)
155943-Thumbnail Image.png
Description
Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections

Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections of smaller objects held together by gravity and possibly cohesion. These “rubble-pile” objects may experience the Brazil Nut Effect (BNE). When a collection of particles of similar densities, but of different sizes, is shaken, smaller particles will move parallel to the local gravity vector while larger objects will do the opposite. Thus, when asteroids are shaken by impacts, they may experience the BNE as possibly evidenced by large boulders seen on their surfaces. I found while the BNE is plausible on asteroids, it is confined to only the outer layers. The Moon, which formed with a Lunar Magma Ocean (LMO), is the next topic of this work. The LMO is due to the Moon forming rapidly after a giant impact between the proto-Earth and another planetary body. The first 80% of the LMO solidified rapidly at which point a floatation crust formed and slowed solidification of the remaining LMO. Impact bombardment during this cooling process, while an important component, has not been studied in detail. Impacts considered here are from debris generated during the formation of the Moon. I developed a thermal model that incorporates impacts and find that impacts may have either expedited or delayed LMO solidification. Finally, I return to affect to consider the differences in attitudes towards science between students enrolled in fully-online degree programs and those enrolled in traditional, in-person degree programs. I analyzed pre- and post-course survey data from the online astrobiology course Habitable Worlds. Unlike their traditional program counterparts, students enrolled in online programs started the course with better attitudes towards science and also further changed towards more positive attitudes during the course. Along with important conclusions in three research fields, this work aims to demonstrate the importance of affect in both scientific research and science education.
ContributorsDingatantrige Perera, Jude Viranga (Author) / Asphaug, Erik (Thesis advisor) / Semken, Steven (Thesis advisor) / Anbar, Ariel (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Robinson, Mark (Committee member) / Arizona State University (Publisher)
Created2017
158384-Thumbnail Image.png
Description
This study explores how bulk composition and oxygen fugacity (fO2) affect the partitioning of sulfur between the molten mantle and core of an early planetesimal. The model can be used to determine the range of potential sulfur concentrations in the asteroid (16) Psyche, which is the target of the National

This study explores how bulk composition and oxygen fugacity (fO2) affect the partitioning of sulfur between the molten mantle and core of an early planetesimal. The model can be used to determine the range of potential sulfur concentrations in the asteroid (16) Psyche, which is the target of the National Aeronautics and Space Administration/Arizona State University Psyche Mission. This mission will be our visit to an M-type asteroid, thought to be dominantly metallic.

The model looks at how oxygen fugacity (fO2), bulk composition, temperature, and pressure affect sulfur partitioning in planetesimals using experimentally derived equations from previous studies. In this model, the bulk chemistry and oxygen fugacity of the parent body is controlled by changing the starting material, using ordinary chondrites (H, L, LL) and carbonaceous chondrites (CM, CI, CO, CK, CV). The temperature of the planetesimal is changed from 1523 K to 1873 K, the silicate mobilization and total melting temperatures, respectively; and pressure from 0.1 to 20 GPa, the core mantle boundary pressures of Vesta and Mars, respectively.

The final sulfur content of a differentiated planetesimal core is strongly dependent on the bulk composition of the original parent body. In all modeled cores, the sulfur content is above 5 weight percent sulfur; this is the point at which the least amount of other light elements is needed to form an immiscible sulfide liquid in a molten core. Early planetesimal cores likely formed an immiscible sulfide liquid, a eutectic sulfide liquid, or potentially were composed of mostly troilite, FeS.
ContributorsBercovici, Hannah La'ia (Author) / Elkins-Tanton, Linda T. (Thesis advisor) / Garvie, Laurence (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2020
158229-Thumbnail Image.png
Description
During the early Solar System many physiochemical processes were taking place that would shape the formation and evolution of rocky bodies. Growth of these rocky objects was rapid, with some growing to sizes of 10s – 1000s km (“planetesimals”) in the first few million years. Because these objects formed early,

During the early Solar System many physiochemical processes were taking place that would shape the formation and evolution of rocky bodies. Growth of these rocky objects was rapid, with some growing to sizes of 10s – 1000s km (“planetesimals”) in the first few million years. Because these objects formed early, they contained sufficient 26Al (an isotope of Al with a short half-life of ~705,000 yrs) to heat the interiors to melting temperatures, resulting in the formation of the first igneous rocks in nascent Solar System. Depending on the size and time of accretion, some bodies experienced high degrees of melting (with some having global magma oceans) while others experienced lower degrees of partial melting, and yet others did not experience any melting at all. These varying degrees of heating and melting processes on early-formed planetesimals produced a variety of achondritic meteorite types. These achondrites have bulk compositions ranging from ultramafic to basaltic, with some rare types having more highly “evolved” (i.e., high-SiO2) compositions. Determining the detailed chronology of their formation with fine time resolution is key for understanding the earliest stages of planet formation, and there are high resolution chronometers that are ideally suited for this application. Three such chronometers (i.e., the 26Al-26Mg, 53Mn-53Cr, and 207Pb-206Pb chronometers) are the focus of this work. Based on investigations of these chronometers in several achondritic meteorites, the implications for the formation and evolution of planetesimals in the early Solar System will be discussed.
ContributorsDunlap, Daniel Robert (Author) / Wadhwa, Meenakshi (Thesis advisor) / Desch, Steve (Committee member) / Hodges, Kip (Committee member) / Sharp, Tom (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Arizona State University (Publisher)
Created2020