Matching Items (214)
156378-Thumbnail Image.png
Description
The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or

The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or by explosive events for high mass stars, and that gas must cool and condense to form stellar nurseries. Though the stellar lifecycle has been studied in detail, relatively little is known about the processes by which hot, diffuse gas ejected by dying stars cools and conglomerates in the interstellar medium (ISM). Much of this mystery arises because only recently have instruments with sufficient spatial and spectral resolution, sensitivity, and bandwidth become available in the terahertz (THz) frequency spectrum where these clouds peak in either thermal or line emission. In this dissertation, I will demonstrate technology advancement of instruments in this frequency regime with new characterization techniques, machining strategies, and scientific models of the spectral behavior of gas species targeted by these instruments.

I begin this work with a description of radiation pattern measurements and their use in astronomical instrument characterization. I will introduce a novel technique to measure complex (phase-sensitive) field patterns using direct detectors. I successfully demonstrate the technique with a single pixel microwave inductance detectors (MKID) experiment. I expand that work by measuring the APEX MKID (A-MKID) focal plane array of 880 pixel detectors centered at 350 GHz. In both chapters I discuss the development of an analysis pipeline to take advantage of all information provided by complex field mapping. I then discuss the design, simulation, fabrication processes, and characterization of a circular-to-rectangular waveguide transformer module integrated into a circularly symmetric feedhorn block. I conclude with a summary of this work and how to advance these technologies for future ISM studies.
ContributorsDavis, Kristina (Author) / Groppi, Christopher E (Thesis advisor) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Jellema, Willem (Committee member) / Pan, George (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2018
156292-Thumbnail Image.png
Description
The objective of this work is to design a low-profile compact Terahertz (THz) imaging system that can be installed in portable devices, unmanned aerial vehicles (UAVs), or CubeSats. Taking advantage of the rotational motion of these platforms, one can use linear antennas, such as leaky-wave antennas or linear phased arrays,

The objective of this work is to design a low-profile compact Terahertz (THz) imaging system that can be installed in portable devices, unmanned aerial vehicles (UAVs), or CubeSats. Taking advantage of the rotational motion of these platforms, one can use linear antennas, such as leaky-wave antennas or linear phased arrays, to achieve fast image acquisition using simple RF front-end topologies. The proposed system relies on a novel image reconstructing technique that uses the principles of computerized tomography (Fourier-slice theorem). It can be implemented using a rotating antenna that produces a highly astigmatic fan-beam. In this work, the imaging system is composed of a linear phased antenna array with a highly directive beam pattern in the E-plane allowing for high spatial resolution imaging. However, the pattern is almost omnidirectional in the H-plane and extends beyond the required field-of-view (FOV). This is a major drawback as the scattered signals from any interferer outside the FOV will still be received by the imaging aperture and cause distortion in the reconstructed image. Also, fan beams exhibit significant distortion (curvature) when tilted at large angles, thus introducing errors in the final image due to its failure to achieve the assumed reconstructing algorithm.

Therefore, a new design is proposed to alleviate these disadvantages. A 14×64 elements non-uniform array with an optimal flat-top pattern is designed with an iterative process using linear perturbation of a close starting pattern until the desired pattern is acquired. The principal advantage of this design is that it restricts the radiated/received power into the required FOV. As a result, a significant enhancement in the quality of images is achieved especially in the mitigation of the effect of any interferer outside the FOV. In this report, these two designs are presented and compared in terms of their imaging efficiency along with a series of numerical results verifying the proof of concept.
ContributorsSakr, Mahmoud (Author) / Trichopoulos, Georgios (Thesis advisor) / Balanis, Constantine (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2018
157436-Thumbnail Image.png
Description
The universe since its formation 13.7 billion years ago has undergone many changes. It began with expanding and cooling down to a temperature low enough for formation of atoms of neutral Hydrogen and Helium gas. Stronger gravitational pull in certain regions caused some regions to be denser and hotter than

The universe since its formation 13.7 billion years ago has undergone many changes. It began with expanding and cooling down to a temperature low enough for formation of atoms of neutral Hydrogen and Helium gas. Stronger gravitational pull in certain regions caused some regions to be denser and hotter than others. These regions kept getting denser and hotter until they had centers hot enough to burn the hydrogen and form the first stars, which ended the Dark Ages. These stars did not live long and underwent violent explosions. These explosions and the photons from the stars caused the hydrogen gas around them to ionize. This went on until all the hydrogen gas in the universe was ionized. This period is known as Epoch Of Reionization. Studying the Epoch Of Reionization will help understand the formation of these early stars, the timeline of the reionization and the formation of the stars and galaxies as we know them today. Studying the radiations from the 21cm line in neutral hydrogen, redshifted to below 200MHz can help determine details such as velocity, density and temperature of these early stars and the media around them.

The EDGES program is one of the many programs that aim to study the Epoch of Reionization. It is a ground-based project deployed in Murchison Radio-Astronomy Observatory in Western Australia. At ground level the Radio Frequency Interference from the ionosphere and various man-made transmitters in the same frequency range as the EDGES receiver make measurements, receiver design and extraction of useful data from received signals difficult. Putting the receiver in space can help majorly escape the RFI. The EDGES In Space is a proposed project that aims at designing a receiver similar to the EDGES receiver but for a cubesat.

This thesis aims at designing a prototype receiver that is similar in architecture to the EDGES low band receiver (50-100MHz) but is significantly smaller in size (small enough to fit on a PCB for a cubesat) while keeping in mind different considerations that affect circuit performance in space.
ContributorsJambagi, Ashwini (Author) / Mauskopf, Philip (Thesis advisor) / Aberle, James T., 1961- (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2019
156453-Thumbnail Image.png
Description
The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and

The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments.

I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all SuperSpec devices and demonstrate basic functionality of the first WSpec prototype. As part of an effort to develop the first W-Band (75-110 GHz) TKIP, I construct a cryogenic waveguide feedthrough, which enhances the Astronomical Instrumentation Laboratory’s capability to test W-Band devices in general. These efforts contribute to the continued maturation of these kinetic inductance technologies, which will usher in a new era of millimeter-wave astronomy.
ContributorsChe, George (Author) / Mauskopf, Philip D (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Groppi, Christopher (Committee member) / Semken, Steven (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2018
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131527-Thumbnail Image.png
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial

This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial neural networks and neural activity in the brain. This project consists of three short pieces, each exploring these concept in different ways.
ContributorsKarpur, Ajay (Author) / Suzuki, Kotoka (Thesis director) / Ingalls, Todd (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05