Matching Items (760)
133353-Thumbnail Image.png
Description
This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for

This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for a broadband transmission of these measurements. It is useful for detecting radiation in the mm and sub mm wavelengths which is significant since absorption and reemission of photons by dust causes radiation from distant objects to reach us in infrared and far-infrared bands. In preparation for testing, our team installed stages designed previously by Paul Abers and his group into our cryostat and designed and installed other parts necessary for the cryostat to be able to test devices on the 250 mK stage. This work included the design and construction of additional parts, a new setup for the wiring in the cryostat, the assembly, testing, and installation of several stainless steel coaxial cables for the measurements through the devices, and other cryogenic and low pressure considerations. The SuperSpec KID was successfully tested on this 250 mK stage thus confirming that the new setup is functional. Our results are in agreement with existing models which suggest that the breaking of cooper pairs in the detector's superconductor which occurs in response to temperature, optical load, and readout power will decrease the resonant frequencies. A negative linear relationship in our results appears, as expected, since the parameters are varied only slightly so that a linear approximation is appropriate. We compared the rate at which the resonant frequency responded to temperature and found it to be close to the expected value.
ContributorsDiaz, Heriberto Chacon (Author) / Mauskopf, Philip (Thesis director) / McCartney, Martha (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This paper considers what factors influence student interest, motivation, and continued engagement. Studies show anticipated extrinsic rewards for activity participation have been shown to reduce intrinsic value for that activity. This might suggest that grade point average (GPA) has a similar effect on academic interests. Further, when incentives such as

This paper considers what factors influence student interest, motivation, and continued engagement. Studies show anticipated extrinsic rewards for activity participation have been shown to reduce intrinsic value for that activity. This might suggest that grade point average (GPA) has a similar effect on academic interests. Further, when incentives such as scholarships, internships, and careers are GPA-oriented, students must adopt performance goals in courses to guarantee success. However, performance goals have not been shown to correlated with continued interest in a topic. Current literature proposes that student involvement in extracurricular activities, focused study groups, and mentored research are crucial to student success. Further, students may express either a fixed or growth mindset, which influences their approach to challenges and opportunities for growth. The purpose of this study was to collect individual cases of students' experiences in college. The interview method was chosen to collect complex information that could not be gathered from standard surveys. To accomplish this, questions were developed based on content areas related to education and motivation theory. The content areas included activities and meaning, motivation, vision, and personal development. The developed interview method relied on broad questions that would be followed by specific "probing" questions. We hypothesize that this would result in participant-led discussions and unique narratives from the participant. Initial findings suggest that some of the questions were effective in eliciting detailed responses, though results were dependent on the interviewer. From the interviews we find that students value their group involvements, leadership opportunities, and relationships with mentors, which parallels results found in other studies.
ContributorsAbrams, Sara (Author) / Hartwell, Lee (Thesis director) / Correa, Kevin (Committee member) / Department of Psychology (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133355-Thumbnail Image.png
Description
This study estimates the capitalization effect of golf courses in Maricopa County using the hedonic pricing method. It draws upon a dataset of 574,989 residential transactions from 2000 to 2006 to examine how the aesthetic, non-golf benefits of golf courses capitalize across a gradient of proximity measures. The measures for

This study estimates the capitalization effect of golf courses in Maricopa County using the hedonic pricing method. It draws upon a dataset of 574,989 residential transactions from 2000 to 2006 to examine how the aesthetic, non-golf benefits of golf courses capitalize across a gradient of proximity measures. The measures for amenity value extend beyond home adjacency and include considerations for homes within a range of discrete walkability buffers of golf courses. The models also distinguish between public and private golf courses as a proxy for the level of golf course access perceived by non-golfers. Unobserved spatial characteristics of the neighborhoods around golf courses are controlled for by increasing the extent of spatial fixed effects from city, to census tract, and finally to 2000 meter golf course ‘neighborhoods.’ The estimation results support two primary conclusions. First, golf course proximity is found to be highly valued for adjacent homes and homes up to 50 meters way from a course, still evident but minimal between 50 and 150 meters, and insignificant at all other distance ranges. Second, private golf courses do not command a higher proximity premia compared to public courses with the exception of homes within 25 to 50 meters of a course, indicating that the non-golf benefits of courses capitalize similarly, regardless of course type. The results of this study motivate further investigation into golf course features that signal access or add value to homes in the range of capitalization, particularly for near-adjacent homes between 50 and 150 meters thought previously not to capitalize.
ContributorsJoiner, Emily (Author) / Abbott, Joshua (Thesis director) / Smith, Kerry (Committee member) / Economics Program in CLAS (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133364-Thumbnail Image.png
Description
The objective of this paper is to provide an educational diagnostic into the technology of blockchain and its application for the supply chain. Education on the topic is important to prevent misinformation on the capabilities of blockchain. Blockchain as a new technology can be confusing to grasp given the wide

The objective of this paper is to provide an educational diagnostic into the technology of blockchain and its application for the supply chain. Education on the topic is important to prevent misinformation on the capabilities of blockchain. Blockchain as a new technology can be confusing to grasp given the wide possibilities it can provide. This can convolute the topic by being too broad when defined. Instead, the focus will be maintained on explaining the technical details about how and why this technology works in improving the supply chain. The scope of explanation will not be limited to the solutions, but will also detail current problems. Both public and private blockchain networks will be explained and solutions they provide in supply chains. In addition, other non-blockchain systems will be described that provide important pieces in supply chain operations that blockchain cannot provide. Blockchain when applied to the supply chain provides improved consumer transparency, management of resources, logistics, trade finance, and liquidity.
ContributorsKrukar, Joel Michael (Author) / Oke, Adegoke (Thesis director) / Duarte, Brett (Committee member) / Hahn, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133379-Thumbnail Image.png
Description
The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul

The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul and a natural $q$-analogue of the Super Catalan numbers. We do this by creating a statistic $\sigma$ for which the $q$ Super Catalan numbers, $S_q(m,n)=\sum_X (-1)^{\mu(X)} q^{\sigma(X)}$. In doing so, we take a step towards finding a strict combinatorial interpretation for the Super Catalan numbers.
ContributorsHouse, John Douglas (Author) / Fishel, Susanna (Thesis director) / Childress, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131503-Thumbnail Image.png
Description
Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have

Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have researched the benefits of digital manipulatives and digital environments through student completion of tasks and testing. This study intends to research students’ use of the digital tools and manipulatives, along with the students’ interactions with the digital environment. To this end, I conducted exploratory teaching experiments with two calculus I students.
In the exploratory teaching experiments, students were introduced to a GeoGebra application developed by Fischer (2019), which includes instructional videos and corresponding quizzes, as well as exercises and interactive notepads, where students could use digital tools to construct line segments and circles (corresponding to the physical straight-edge and compass). The application built up the students’ foundational knowledge, culminating in the construction and verbal proof of Euclid’s Elements, Proposition 1 (Euclid, 1733).
The central findings of this thesis are the students’ interactions with the digital environment, with observed changes in their conceptions of radii and circles, and in their use of tools. The students were observed to have conceptions of radii as a process, a geometric shape, and a geometric object. I observed the students’ conceptions of a circle change from a geometric shape to a geometric object, and with that change, observed the students’ use of tools change from a measuring focus to a property focus.
I report a summary of the students’ work and classify their reasoning and actions into the above categories, and an analysis of how the digital environment impacts the students’ conceptions. I also briefly discuss the impact of the findings on pedagogy and future research.
ContributorsSakauye, Noelle Marie (Author) / Roh, Kyeong Hah (Thesis director) / Zandieh, Michelle (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131527-Thumbnail Image.png
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05