Matching Items (2)
Filtering by

Clear all filters

127960-Thumbnail Image.png
Description

Balancing energy performance and Indoor Environmental Quality (IEQ) performance has become a conventional tradeoff in sustainable building design. In recognition of the impact IEQ performance has on the occupants of educational facilities, universities are increasingly interested in tracking the performance of their buildings. This paper highlights and quantifies several key

Balancing energy performance and Indoor Environmental Quality (IEQ) performance has become a conventional tradeoff in sustainable building design. In recognition of the impact IEQ performance has on the occupants of educational facilities, universities are increasingly interested in tracking the performance of their buildings. This paper highlights and quantifies several key factors that affect the occupant satisfaction of higher education facilities by comparing building performance of two campuses located in two different countries and environments. A total of 320 occupants participated in IEQ occupant satisfaction surveys, split evenly between the two campuses, to investigate their satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy. The difference in IEQ performance across the two campuses was around 17% which lays the foundation for a future study to explore the reasons behind this noticeable variation.

ContributorsEl Asmar, Mounir (Author) / Chokor, Abbas (Author) / Srour, Issam (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-24
127964-Thumbnail Image.png
Description

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards.

ContributorsChokor, Abbas (Author) / Naganathan, Hariharan (Author) / Chong, Oswald (Author) / El Asmar, Mounir (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20