Matching Items (3)
129253-Thumbnail Image.png
Description

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In situ x-ray photoelectron spectroscopy was used to confirm the presence of the oxygen-deficient layer. Electrical characterization indicates sheet carrier densities of ∼1013 cm−2 at room temperature for the sample deposited at 700 °C, with a maximum electron Hall mobility of 3100 cm2V-1s-1 at 3.2 K and room temperature mobility of 22 cm2V-1s-1. Annealing in oxygen is found to reduce the carrier density and turn a conductive sample into an insulator.

ContributorsKormondy, Kristy J. (Author) / Posadas, Agham B. (Author) / Ngo, Thong Q. (Author) / Lu, Sirong (Author) / Goble, Nicholas (Author) / Jordan-Sweet, Jean (Author) / Gao, Xuan P. A. (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ekerdt, John G. (Author) / Demkov, Alexander A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-07
129606-Thumbnail Image.png
Description

The (110) plane of Co3O4 spinel exhibits significantly higher rates of carbon monoxide conversion due to the presence of active Co3+ species at the surface. However, experimental studies of Co3O4 (110) surfaces and interfaces have been limited by the difficulties in growing high-quality films. We report thin (10–250 Å) Co3O4 films

The (110) plane of Co3O4 spinel exhibits significantly higher rates of carbon monoxide conversion due to the presence of active Co3+ species at the surface. However, experimental studies of Co3O4 (110) surfaces and interfaces have been limited by the difficulties in growing high-quality films. We report thin (10–250 Å) Co3O4 films grown by molecular beam epitaxy in the polar (110) direction on MgAl2O4 substrates. Reflection high-energy electron diffraction, atomic force microscopy, x-ray diffraction, and transmission electron microscopy measurements attest to the high quality of the as-grown films. Furthermore, we investigate the electronic structure of this material by core level and valence band x-ray photoelectron spectroscopy, and first-principles density functional theory calculations. Ellipsometry reveals a direct band gap of 0.75 eV and other interband transitions at higher energies. A valence band offset of 3.2 eV is measured for the Co3O4/MgAl2O4 heterostructure. Magnetic measurements show the signature of antiferromagnetic ordering at 49 K. FTIR ellipsometry finds three infrared-active phonons between 300 and 700 cm-1.

ContributorsKormondy, Kristy J. (Author) / Posadas, Agham B. (Author) / Slepko, Alexander (Author) / Dhamdhere, Ajit (Author) / Smith, David (Author) / Mitchell, Khadijih N. (Author) / Willett-Gies, Travis I. (Author) / Zollner, Stefan (Author) / Marshall, Luke G. (Author) / Zhou, Jianshi (Author) / Demkov, Alexander A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-28
129205-Thumbnail Image.png
Description

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001)

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10-5 A/cm2 at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (Dit) is estimated to be as low as ∼2 × 1012 cm-2 eV-1 under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased Dit value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

ContributorsMcDaniel, Martin D. (Author) / Hu, Chengqing (Author) / Lu, Sirong (Author) / Ngo, Thong Q. (Author) / Posadas, Agham (Author) / Jiang, Aiting (Author) / Smith, David (Author) / Yu, Edward T. (Author) / Demkov, Alexander A. (Author) / Ekerdt, John G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-07