Matching Items (365)
133355-Thumbnail Image.png
Description
This study estimates the capitalization effect of golf courses in Maricopa County using the hedonic pricing method. It draws upon a dataset of 574,989 residential transactions from 2000 to 2006 to examine how the aesthetic, non-golf benefits of golf courses capitalize across a gradient of proximity measures. The measures for

This study estimates the capitalization effect of golf courses in Maricopa County using the hedonic pricing method. It draws upon a dataset of 574,989 residential transactions from 2000 to 2006 to examine how the aesthetic, non-golf benefits of golf courses capitalize across a gradient of proximity measures. The measures for amenity value extend beyond home adjacency and include considerations for homes within a range of discrete walkability buffers of golf courses. The models also distinguish between public and private golf courses as a proxy for the level of golf course access perceived by non-golfers. Unobserved spatial characteristics of the neighborhoods around golf courses are controlled for by increasing the extent of spatial fixed effects from city, to census tract, and finally to 2000 meter golf course ‘neighborhoods.’ The estimation results support two primary conclusions. First, golf course proximity is found to be highly valued for adjacent homes and homes up to 50 meters way from a course, still evident but minimal between 50 and 150 meters, and insignificant at all other distance ranges. Second, private golf courses do not command a higher proximity premia compared to public courses with the exception of homes within 25 to 50 meters of a course, indicating that the non-golf benefits of courses capitalize similarly, regardless of course type. The results of this study motivate further investigation into golf course features that signal access or add value to homes in the range of capitalization, particularly for near-adjacent homes between 50 and 150 meters thought previously not to capitalize.
ContributorsJoiner, Emily (Author) / Abbott, Joshua (Thesis director) / Smith, Kerry (Committee member) / Economics Program in CLAS (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133370-Thumbnail Image.png
Description
The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the

The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the decomposition of human cadavers affects the bioavailability of essential plant nutrients (P, K, Ca, Fe, C and N) as well as toxins (As and Pb) in soil. By studying the bioavailability of plant nutrients, especially nitrogen, and toxins, this research hopes to inform new technologies and techniques for locating clandestine gravesites. The objectives of this study were twofold: 1) determine whether soils exposed to cadaveric decomposition can be visually distinguished from one another via macroscopic and microscopic observation and 2) observe general changes in nutrient and toxic element bioavailability and changes in carbon and nitrogen isotope ratios over time as well as spatially across a body. Visual analyses of soil samples, both macro- and microscopically did not show potential in distinguishing soil exposed to cadaver decomposition from unexposed soil. Relative bioavailability as well as overall bioavailable concentrations of both plant nutrients and toxins were highly elevated after 12 months. Toxins, such as As and Pb, tended to have greater bioavailable concentrations at the near-torso positions, though no consistent spatial trends between nutrient bioavailable concentrations were observed between the three individuals. Nitrogen concentrations and nitrogen isotope (δ15N) ratios show strong potential as markers of clandestine graves throughout the study period. While this research demonstrates further need to uncover what factors influence bioavailability of elements in gravesoil, it shows that the bioavailability of plant nutrients and toxins as well as δ15N ratios are greatly affected by cadaver decomposition, and emerging technologies in gravesite detection based on plant or soil changes have a solid foundation.
ContributorsAnderson, Sara Rae (Author) / Kobojek, Kimberly (Thesis director) / Gordon, Gwyneth (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131495-Thumbnail Image.png
Description
Criminal Justice is a complex subject matter, and not everyone agrees on the way a criminal justice system ought to function. But one feature that is common to virtually all forms of proposed justice systems is that a true justice system treats people ethically. The question, then, is how a

Criminal Justice is a complex subject matter, and not everyone agrees on the way a criminal justice system ought to function. But one feature that is common to virtually all forms of proposed justice systems is that a true justice system treats people ethically. The question, then, is how a justice system can achieve this. This investigation analyzed two ethical theories, Kantianism and Utilitarianism, to determine which one would be better suited for guiding a criminal justice system on how to treat the people involved ethically. This investigation focused on applying the two theories to the U.S. Criminal Justice System in particular.
Kantianism is a duty-based moral theory in which actions have an intrinsic moral worth. This means certain actions are morally right and other are morally wrong, regardless of the intended or realized consequences. The theory relies on the categorical imperative to judge the morality of certain actions. It states that an action is moral if its maxim can be willed universal law and if it avoids treating people as merely a means. In contrast, Utilitarianism is a consequentialist theory which focuses on the consequences of an action in judging moral worth. In Utilitarianism, the morally correct action is the one which will maximize utility; that is to say, the morally right action is the one which will produce the greatest amount of happiness and minimize the amount of pain for the greatest number of people.
After applying these two theories to moral dilemmas facing the U.S. Criminal Justice System, including the appropriate collection of DNA evidence, the use of police deception, and the use of criminal punishments such as solitary confinement or the death penalty, it was clear that Kantianism was the ethical theory best suited for guiding the system in treating people ethically. This is because Kantianism’s focus on the intrinsic moral worth of an action rather than its consequences leaves less room for ambiguity than does Utilitarianism.
ContributorsMorett, Xavier Laakea (Author) / Manninen, Bertha (Thesis director) / Kimberly, Kobojek (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131505-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsMintz, David Anthony (Co-author) / Parker, Augustus (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131506-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsParker, Augustus Carrucciu (Co-author) / Mintz, David (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131513-Thumbnail Image.png
Description
Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be

Cellular and molecular biologists often perform cellular assays to obtain a better understanding of how cells work. However, in order to obtain a measurable response by the end of an experiment, the cells must reach an ideal cell confluency. Prior to conducting the cellular assays, range-finding experiments need to be conducted to determine an initial plating density that will result in this ideal confluency, which can be costly. To help alleviate this common issue, a mathematical model was developed that describes the dynamics of the cell population used in these experiments. To develop the model, images of cells from different three-day experiments were analyzed in Photoshop®, giving a measure of cell count and confluency (the percentage of surface area covered by cells). The cell count data were then fitted into an exponential growth model and were correlated to the cell confluency to obtain a relationship between the two. The resulting mathematical model was then evaluated with data from an independent experiment. Overall, the exponential growth model provided a reasonable and robust prediction of the cell confluency, though improvements to the model can be made with a larger dataset. The approach used to develop this model can be adapted to generate similar models of different cell-lines, which will reduce the number of preliminary range-finding experiments. Reducing the number of these preliminary experiments can save valuable time and experimental resources needed to conduct studies using cellular assays.
ContributorsGuerrero, Victor Dominick (Co-author) / Guerrero, Victor (Co-author) / Watanabe, Karen (Thesis director) / Jurutka, Peter (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131520-Thumbnail Image.png
Description
A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as

A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as well as synthesizing information about accelerant composition to interpret GC-MS data output. This would allow the student to experience first-hand what the subsection of arson analysis has to offer in the field of forensic science which could help the student decide on more specialties to study later on. I was unable to run the lab protocol in a laboratory setting, therefore in the future I want to use the lab protocol and receive feedback in order to improve the protocol so the student is receiving the best possible learning outcomes. The experience of creating a lab protocol in forensic science gave myself a greater understanding of what goes on behind an academic learning procedure and more insight on arson evidence analysis.
Created2020-05
133886-Thumbnail Image.png
Description
This paper will focus on the changes in China's OFDI while also explaining its growth. However, another primary focus will be comparing the relationships between China, Hong Kong, and Africa. This paper will show the correlating changes between the three regions and explain the distribution of China's investments. One argument

This paper will focus on the changes in China's OFDI while also explaining its growth. However, another primary focus will be comparing the relationships between China, Hong Kong, and Africa. This paper will show the correlating changes between the three regions and explain the distribution of China's investments. One argument is that Hong Kong may play a large role in facilitating Chinese investment into Africa, which if not disaggregated, could lead to inaccurate numbers of China's FDI into Africa. The purpose of this paper is to investigate the importance of China's relationship with Hong Kong and Africa. In 2012, Garth Shelton argued that Hong Kong was an important gateway in South Africa's trade with China. Since then, many others have made similar claims in support of Hong Kong's bigger role. However, due to the difficulty of finding specific data for each region, these analyses are incomplete and fail to clearly substantiate their theory. I will try to find a correlation by gathering my own data, tables, and through different interviews.
ContributorsSon, James (Author) / Simonson, Mark (Thesis director) / Iheduru, Okechukwu (Committee member) / Economics Program in CLAS (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133894-Thumbnail Image.png
Description
Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must

Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must navigate their new world. The original premiere run was March 27-28, 2018, original cast: Caitlin Andelora, Rikki Tremblay, and Michael Tristano Jr.
ContributorsToye, Abigail Elizabeth (Author) / Linde, Jennifer (Thesis director) / Abele, Kelsey (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133924-Thumbnail Image.png
Description
Sagebrush Coffee is a small business in Chandler, Arizona that purchases green beans, roasts them in small batches for quality, and ships fresh, gourmet roasted coffee beans across the nation. Deciding which coffee beans to buy and roast is one of the most crucial business decisions Sagebrush and other gourmet

Sagebrush Coffee is a small business in Chandler, Arizona that purchases green beans, roasts them in small batches for quality, and ships fresh, gourmet roasted coffee beans across the nation. Deciding which coffee beans to buy and roast is one of the most crucial business decisions Sagebrush and other gourmet coffee roasters face. Further complicating this decision is the fact that coffee is a crop, and like all crops, has a specific growing season and the exact same product cannot usually be ordered from year to year, even if it proves to be successful. The goal of this research is to use data analytics and visualization to help Sagebrush make better purchasing decisions by identifying consumer purchasing trends and providing a recommendation for their portfolio mix. In the end, I found that Latin American coffees are popular with both returning and first-time customers, but a specific country of origin does not appear to be associated with the top coffee producing countries. Additionally, December is a critical month for Sagebrush and Sagebrush should make sure to target the states with the most sales: California, Pennsylvania, and New York. Arizona has growth potential as it is not one of the top three locations, despite the presence of a physical store. Also included in the following report is a portfolio recommendation suggesting how many of each product based on region, processing type, and roast level to carry in inventory.
ContributorsBlue, Jessica Morgan (Author) / Kellso, James (Thesis director) / Davila, Eddie (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Department of Supply Chain Management (Contributor) / Morrison School of Agribusiness (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05