Matching Items (3)
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
135004-Thumbnail Image.png
Description
Even though access to purified water has improved, there are still many people and locations that do not have this convenience. Approximately 1.2 billion people lack access to safe drinking water and 2.6 billion people have little or no sanitation. Furthermore, breakthroughs in water purification technology are essential to combat

Even though access to purified water has improved, there are still many people and locations that do not have this convenience. Approximately 1.2 billion people lack access to safe drinking water and 2.6 billion people have little or no sanitation. Furthermore, breakthroughs in water purification technology are essential to combat these issues. While there are several approaches to water purification, membrane processes are widely used based on their numerous advantages, including high operating temperature and low energy input. In essence, membranes do not require chemical additives, thermal inputs, or regeneration of spent media. The spin coating procedure was used to make a total of 94 membrane samples by adjusting the following variables: membrane support, membrane wetting, solvent, polyacrylonitrile (PAN) content, water contant, Linde Type A (LTA) zeolite content, and the rotations per minute (RPM) of the spin coater. Parameters that were held constant include PAN for the permeable dispersion layer, LTA zeolites as the inorganic filler material, and a spin time of 30 seconds for the spin coater. There were key findings in both the preliminary and core data sets. From the preliminary membrane samples 1 \u2014 40, a baseline was established to use for the core data: polysulfone (PSf) support, 1 \u2014 3% PAN content, and 1 \u2014 3% LTA zeolite content. Flux analysis revealed many inconsistencies in groups 1 \u2014 13 such as unreasonably high error bars (+50%), flow rates that were near zero or extremely high (+15,000 L hr-1 m-2), and lack of a clear trend for membrane specifications. Membranes with a high degree of polymer \u2014 zeolite aggregation on the surface had very low flux values. A higher flux of 4,700 L hr-1 m-2 was correlated to gap and hole formation on the membrane surface. It was shown in group 7 that an increasing degree of surface defects corresponded to an increasing flux of 17,000 L hr-1 m-2. Although the target flux for a defect \u2014 free membrane lies between 500 \u2014 4,000 L hr-1 m-2, there were not any groups with flux values in this range. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis revealed that the observed group similarities could not be attributed to individual membrane specifications. However, this data showed chemical fingerprint overlap across all groups, which were synthesized with varying quantities of the same chemicals. Analysis of flux data, SEM images, and ATR-FTIR data all suggest that the spin coating procedure leads to inconsistent results. Although the spin coater provides flexibility in user control, its advantages are outweighed by the limited control of surface uniformity, zeolite dispersion, and defect formation. It has been shown that the spin coating process is not compatible with the formation of a uniform polymer \u2014 zeolite layer in these experiments.
ContributorsMaltagliati, Alexander Justin (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05