Matching Items (8)

149364-Thumbnail Image.png

Quantitative phase imaging of magnetic nanostructures using off-axis electron holography

Description

The research of this dissertation has involved the nanoscale quantitative characterization of patterned magnetic nanostructures and devices using off-axis electron holography and Lorentz microscopy. The investigation focused on different materials

The research of this dissertation has involved the nanoscale quantitative characterization of patterned magnetic nanostructures and devices using off-axis electron holography and Lorentz microscopy. The investigation focused on different materials of interest, including monolayer Co nanorings, multilayer Co/Cu/Py (Permalloy, Ni81Fe19) spin-valve nanorings, and notched Py nanowires, which were fabricated via a standard electron-beam lithography (EBL) and lift-off process. Magnetization configurations and reversal processes of Co nanorings, with and without slots, were observed. Vortex-controlled switching behavior with stepped hysteresis loops was identified, with clearly defined onion states, vortex states, flux-closure (FC) states, and Omega states. Two distinct switching mechanisms for the slotted nanorings, depending on applied field directions relative to the slot orientations, were attributed to the vortex chirality and shape anisotropy. Micromagnetic simulations were in good agreement with electron holography observations of the Co nanorings, also confirming the switching field of 700-800 Oe. Co/Cu/Py spin-valve slotted nanorings exhibited different remanent states and switching behavior as a function of the different directions of the applied field relative to the slots. At remanent state, the magnetizations of Co and Py layers were preferentially aligned in antiparallel coupled configuration, with predominant configurations in FC or onion states. Two-step and three-step hysteresis loops were quantitatively determined for nanorings with slots perpendicular, or parallel to the applied field direction, respectively, due to the intrinsic coercivity difference and interlayer magnetic coupling between Co and Py layers. The field to reverse both layers was on the order of ~800 Oe. Domain-wall (DW) motion within Py nanowires (NWs) driven by an in situ magnetic field was visualized and quantified. Different aspects of DW behavior, including nucleation, injection, pinning, depinning, relaxation, and annihilation, occurred depending on applied field strength. A unique asymmetrical DW pinning behavior was recognized, depending on DW chirality relative to the sense of rotation around the notch. The transverse DWs relaxed into vortex DWs, followed by annihilation in a reversed field, which was in agreement with micromagnetic simulations. Overall, the success of these studies demonstrated the capability of off-axis electron holography to provide valuable insights for understanding magnetic behavior on the nanoscale.

Contributors

Agent

Created

Date Created
  • 2010

150403-Thumbnail Image.png

Path integral Monte Carlo simulations of semiconductor quantum dots and quantum wires

Description

he accurate simulation of many-body quantum systems is a challenge for computational physics. Quantum Monte Carlo methods are a class of algorithms that can be used to solve the many-body

he accurate simulation of many-body quantum systems is a challenge for computational physics. Quantum Monte Carlo methods are a class of algorithms that can be used to solve the many-body problem. I study many-body quantum systems with Path Integral Monte Carlo techniques in three related areas of semiconductor physics: (1) the role of correlation in exchange coupling of spins in double quantum dots, (2) the degree of correlation and hyperpolarizability in Stark shifts in InGaAs/GaAs dots, and (3) van der Waals interactions between 1-D metallic quantum wires at finite temperature. The two-site model is one of the simplest quantum problems, yet the quantitative mapping from a three-dimensional model of a quantum double dot to an effective two-site model has many subtleties requiring careful treatment of exchange and correlation. I calculate exchange coupling of a pair of spins in a double dot from the permutations in a bosonic path integral, using Monte Carlo method. I also map this problem to a Hubbard model and find that exchange and correlation renormalizes the model parameters, dramatically decreasing the effective on-site repulsion at larger separations. Next, I investigated the energy, dipole moment, polarizability and hyperpolarizability of excitonic system in InGaAs/GaAs quantum dots of different shapes and successfully give the photoluminescence spectra for different dots with electric fields in both the growth and transverse direction. I also showed that my method can deal with the higher-order hyperpolarizability, which is most relevant for fields directed in the lateral direction of large dots. Finally, I show how van der Waals interactions between two metallic quantum wires change with respect to the distance between them. Comparing the results from quantum Monte Carlo and the random phase approximation, I find similar power law dependance. My results for the calculation in quasi-1D and exact 1D wires include the effect of temperature, which has not previously been studied.

Contributors

Agent

Created

Date Created
  • 2011

157579-Thumbnail Image.png

Exploration of the cold-wall CVD synthesis of monolayer MoS2 and WS2

Description

A highly uniform and repeatable method for synthesizing the single-layer transition metal dichalcogenides (TMDs) molybdenum disulfide, MoS2, and tungsten disulfide, WS2, was developed. This method employed chemical vapor deposition (CVD)

A highly uniform and repeatable method for synthesizing the single-layer transition metal dichalcogenides (TMDs) molybdenum disulfide, MoS2, and tungsten disulfide, WS2, was developed. This method employed chemical vapor deposition (CVD) of precursors in a custom built cold-wall reaction chamber designed to allow independent control over the growth parameters. Iterations of this reaction chamber were employed to overcome limitations to the growth method. First, molybdenum trioxide, MoO3, and S were co-evaporated from alumina coated W baskets to grow MoS2 on SiO2/Si substrates. Using this method, films were found to have repeatable coverage, but unrepeatable morphology. Second, the reaction chamber was modified to include a pair of custom bubbler delivery systems to transport diethyl sulfide (DES) and molybdenum hexacarbonyl (MHC) to the substrate as a S and Mo precursors. Third, tungsten hexacarbonyl (WHC) replaced MHC as a transition metal precursor for the synthesis of WS2 on Al2O3, substrates. This method proved repeatable in both coverage and morphology allowing the investigation of the effect of varying the flow of Ar, varying the substrate temperature and varying the flux of DES to the sample. Increasing each of these parameters was found to decrease the nucleation density on the sample and, with the exception of the Ar flow, induce multi-layer feature growth. This combination of precursors was also used to investigate the reported improvement in feature morphology when NaCl is placed upstream of the substrate. This was found to have no effect on experiments in the configurations used. A final effort was made to adequately increase the feature size by switching from DES to hydrogen sulfide, H2S, as a source of S. Using H2S and WHC to grow WS2 films on Al2O3, it was found that increasing the substrate temperature and increasing the H2S flow both decrease nucleation density. Increasing the H2S flow induced bi-layer growth. Ripening of synthesized WS2 crystals was demonstrated to occur when the sample was annealed, post-growth, in an Ar, H2, and H2S flow. Finally, it was verified that the final H2S and WHC growth method yielded repeatability and uniformity matching, or improving upon, the other methods and precursors investigated.

Contributors

Agent

Created

Date Created
  • 2019

155056-Thumbnail Image.png

Optical properties of hybrid nanomaterials

Description

The interaction of light with nanoscale structures consisting of metal and two-level quantum emitters is investigated computationally. A method of tilting the incoming electromagnetic wave is used to demonstrate coupling

The interaction of light with nanoscale structures consisting of metal and two-level quantum emitters is investigated computationally. A method of tilting the incoming electromagnetic wave is used to demonstrate coupling between a sinusoidal grating and two-level quantum emitters. A system consisting of metallic v-grooves and two-level emitters is thoroughly explored in the linear regime, where the spatially uniform fields provide a unique means of characterizing the coupling between the v-grooves and emitters. Furthermore, subwavelength spatial effects in the ground state population of emitters in the v-grooves are observed and analyzed in the non-linear regime. Finally, photon echoes are explored in the case of a one-dimensional ensemble of interacting two-level emitters as well as two-level emitters coupled to metallic slits, demonstrating the influence of collective effects on the echo amplitude in the former and the modifcation of the photon echo due to interaction with surface plasmons on the slits in the latter.

Contributors

Agent

Created

Date Created
  • 2016

156585-Thumbnail Image.png

Nucleation and growth of single layer graphene on supported Cu catalysts by cold wall chemical vapor deposition

Description

Chemical Vapor Deposition (CVD) is the most widely used method to grow large-scale single layer graphene. However, a systematic experimental study of the relationship between growth parameters and graphene film

Chemical Vapor Deposition (CVD) is the most widely used method to grow large-scale single layer graphene. However, a systematic experimental study of the relationship between growth parameters and graphene film morphology, especially in the industrially preferred cold wall CVD, has not been undertaken previously. This research endeavored to address this and provide comprehensive insight into the growth physics of graphene on supported solid and liquid Cu films using cold wall CVD.

A multi-chamber UHV system was customized and transformed into a cold wall CVD system to perform experiments. The versatile growth process was completely custom-automated by controlling the process parameters with LabVIEW. Graphene growth was explored on solid electrodeposited, recrystallized and thin sputter deposited Cu films as well as on liquid Cu supported on W/Mo refractory substrates under ambient pressure using Ar, H₂ and CH₄ mixtures.

The results indicate that graphene grown on Cu films using cold wall CVD follows a classical two-dimensional nucleation and growth mechanism. The nucleation density decreases and average size of graphene crystallites increases with increasing dilution of the CH₄/H₂ mixture by Ar, decrease in total flow rate and decrease in CH₄:H₂ ratio at a fixed substrate temperature and chamber pressure. Thus, the resulting morphological changes correspond with those that would be expected if the precursor deposition rate was varied at a fixed substrate temperature for physical deposition using thermal evaporation. The evolution of graphene crystallite boundary morphology with decreasing effective C deposition rate indicates the effect of edge diffusion of C atoms along the crystallite boundaries, in addition to H₂ etching, on graphene crystallite shape.

The roles of temperature gradient, chamber pressure and rapid thermal heating in C precursor-rich environment on graphene growth morphology on thin sputtered Cu films were explained. The growth mechanisms of graphene on substrates annealed under reducing and non-reducing environment were explained from the scaling functions of graphene island size distribution in the pre-coalescence regime. It is anticipated that applying the pre-coalescence size distribution method presented in this work to other 2D material systems may be useful for elucidating atomistic mechanisms of film growth that are otherwise difficult to obtain.

Contributors

Agent

Created

Date Created
  • 2018

151745-Thumbnail Image.png

Optical properties of wurtzite semiconductors studied using cathodoluminescence imaging and spectroscopy

Description

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.

Contributors

Agent

Created

Date Created
  • 2013

150031-Thumbnail Image.png

Studies of epitaxial silicon nanowire growth at low temperature

Description

Silicon nanowires were grown epitaxially on Si (100) and (111) surfaces using the Vapor-Liquid-Solid (VLS) mechanism under both thermal and plasma enhanced growth conditions. Nanowire morphology was investigated as a

Silicon nanowires were grown epitaxially on Si (100) and (111) surfaces using the Vapor-Liquid-Solid (VLS) mechanism under both thermal and plasma enhanced growth conditions. Nanowire morphology was investigated as a function of temperature, time, disilane partial pressure and substrate preparation. Silicon nanowires synthesized in low temperature plasma typically curved compared to the linear nanowires grown under simple thermal conditions. The nanowires tended bend more with increasing disilane partial gas pressure up to 25 x10-3 mTorr. The nanowire curvature measured geometrically is correlated with the shift of the main silicon peak obtained in Raman spectroscopy. A mechanistic hypothesis was proposed to explain the bending during plasma activated growth. Additional driving forces related to electrostatic and Van der Waals forces were also discussed. Deduced from a systematic variation of a three-step experimental protocol, the mechanism for bending was associated with asymmetric deposition rate along the outer and inner wall of nanowire. The conditions leading to nanowire branching were also examined using a two-step growth process. Branching morphologies were examined as a function of plasma powers between 1.5 W and 3.5 W. Post-annealing thermal and plasma-assisted treatments in hydrogen were compared to understand the influences in the absence of an external silicon source (otherwise supplied by disilane). Longer and thicker nanowires were associated with longer annealing times due to an Ostwald-like ripening effect. The roles of surface diffusion, gas diffusion, etching and deposition rates were examined.

Contributors

Agent

Created

Date Created
  • 2011

149647-Thumbnail Image.png

Recognition tunneling: approaches towards next generation DNA sequencing

Description

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated.

Contributors

Agent

Created

Date Created
  • 2011