Matching Items (23)
152106-Thumbnail Image.png
Description
There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of

There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (μr>1;εr>1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of μ" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low μ") materials but also with highly lossy materials (tan(δm)>>1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves supported by the magneto-dielectric structure and leads to useful design rules connecting the permeability of the material to the cross sectional area of the antenna in relation to the desired frequency of operation. The Green function problem of the permeable prolate spheroidal antenna is also solved as a good approximation to a finite cylinder.
ContributorsSebastian, Tom (Author) / Diaz, Rodolfo E (Thesis advisor) / Pan, George (Committee member) / Aberle, James T., 1961- (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152056-Thumbnail Image.png
Description
This dissertation proposes a miniature FIR filter that works at microwave frequencies, whose filter response can ideally be digitally programmed. Such a frequency agile device can find applications in cellular communications and wireless networking. The basic concept of the FIR filter utilizes a low loss acoustic waveguide of appropriate geometry

This dissertation proposes a miniature FIR filter that works at microwave frequencies, whose filter response can ideally be digitally programmed. Such a frequency agile device can find applications in cellular communications and wireless networking. The basic concept of the FIR filter utilizes a low loss acoustic waveguide of appropriate geometry that acts as a traveling wave tapped-delay line. The input RF signal is applied by an array of capacitive transducers at various locations on the acoustic waveguide at one end that excites waves of a propagating acoustic mode with varying spatial delays and amplitudes which interfere as they propagate. The output RF signal is picked up at the other end of the waveguide by another array of capacitive transducers. Tuning of the FIR filter coefficients is realized by controlling the DC voltage profile applied to the individual transducers which essentially shapes the overall filter response. Equivalent circuit modeling of the capacitive transducer, acoustic waveguide and transducer-line coupling is presented in this dissertation. A theoretical model for the filter is developed from a general theory of an array of transducers exciting a waveguide and is used to obtain a set of filter design equations. A MATLAB based circuit simulator is developed to simulate the filter responses. Design parameters and simulation results obtained for an example waveguide structure are presented and compared to the values estimated by the theoretical model. A waveguide structure utilizing the Rayleigh-like mode of a ridge is then introduced. A semi-analytical method to obtain propagating elastic modes of such a ridge waveguide etched in an anisotropic crystal is presented. Microfabrication of a filter based on ridges etched in single crystal Silicon is discussed along with details of the challenges faced. Finally, future work and a few alternative designs are presented that can have a better chance of success. Analysis and modeling work to this point has given a good understanding of the working principles, performance tradeoffs and fabrication pitfalls of the proposed device. With the appropriate acoustic waveguide structure, the proposed device could make it possible to realize miniature programmable FIR filters in the GHz range.
ContributorsGalinde, Ameya (Author) / Abbaspour-Tamijani, Abbas (Thesis advisor) / Chae, Junseok (Committee member) / Pan, George (Committee member) / Phillips, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151997-Thumbnail Image.png
Description
The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation

The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation enhancement contains two parts: the primary field enhancement calculated from the Mie theory, and a derating factor due to the backscattering field from the molecule. When compared against a simplified model that only involves the primary Mie theory field calculation, this more rigorous model indicates that the excitation enhancement near the surface of the sphere is quenched severely due to the back-scattering field from the molecule. The degree of quenching depends in part on the bandwidth of the illumination because the presence of the sphere induces a red-shift in the absorption frequency of the molecule and at the same time broadens its spectrum. Monochromatic narrow band illumination at the molecule's original (unperturbed) resonant frequency yields large quenching. For the more realistic broadband illumination scenario, we calculate the final enhancement by integrating over the excitation/absorption spectrum. The numerical results indicate that the resonant illumination scenario overestimates the quenching and therefore would underestimate the total excitation enhancement if the illumination has a broader bandwidth than the molecule. Combining the excitation model with the exact Electrodynamical theory for emission, the complete realistic model demonstrates that there is a potential for significant fluorescence enhancement only for the case of a low quantum yield molecule close to the surface of the sphere. General expressions of the fluorescence enhancement for arbitrarily-shaped metal antennas are derived. The finite difference time domain method is utilized for analyzing these complicated antenna structures. We calculate the total excitation enhancement for the two-sphere dimer. Although the enhancement is greater in this case than for the single sphere, because of the derating effects the total enhancement can never reach the local field enhancement. In general, placing molecules very close to a plasmonic antenna surface yields poor enhancement because the local field is strongly affected by the molecular self-interaction with the metal antenna.
ContributorsZhang, Zhe (Author) / Diaz, Rodolfo E (Thesis advisor) / Lim, Derrick (Thesis advisor) / Pan, George (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
151299-Thumbnail Image.png
Description
Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed.
ContributorsWang, Le, 1975- (Author) / Pan, George (Thesis advisor) / Yu, Hongyu (Committee member) / Aberle, James T., 1961- (Committee member) / Diaz, Rodolfo (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
152830-Thumbnail Image.png
Description
Two commercial blade antennas for aircraft applications are investigated. The computed results are compared with measurements performed in the ASU ElectroMagnetic Anechoic Chamber (EMAC). The antennas are modeled as mounted on a 13-inch diameter circular ground plane, which corresponds to that of the measurements. Two electromagnetic modeling codes are used

Two commercial blade antennas for aircraft applications are investigated. The computed results are compared with measurements performed in the ASU ElectroMagnetic Anechoic Chamber (EMAC). The antennas are modeled as mounted on a 13-inch diameter circular ground plane, which corresponds to that of the measurements. Two electromagnetic modeling codes are used in this project to model the antennas and predict their radiation and impedance characteristics: FEKO and WIPL-D Pro. A useful tool of WIPL-D Pro, referred to as WIPL-D Pro CAD, has proven to be convenient for modeling complex geometries. The classical wire monopole was also modeled using high-frequency methods, GO and GTD/UTD, mounted on both a rectangular and a circular ground plane. A good agreement between the patterns of this model and FEKO has been obtained. The final versions of the solvers used in this work are FEKO (Suit 6.2), WIPL-D Pro v11 and WIPL-D Pro CAD 2013. Features of the simulation solvers are presented and compared. Simulation results of FEKO and WIPL-D Pro have good agreements with the measurements for radiation and impedance characteristics. WIPL-D Pro has a much higher computational efficiency than FEKO.
ContributorsZhang, Kaiyue (Author) / Balanis, Constantine A. (Thesis advisor) / Pan, George (Committee member) / Aberle, James T. (Committee member) / Arizona State University (Publisher)
Created2014
153322-Thumbnail Image.png
Description
Inductors are fundamental components that do not scale well. Their physical limitations to scalability along with their inherent losses make them the main obstacle in achieving monolithic system-on-chip platform (SoCP). For past decades researchers focused on integrating magnetic materials into on-chip inductors in the quest of achieving high inductance density

Inductors are fundamental components that do not scale well. Their physical limitations to scalability along with their inherent losses make them the main obstacle in achieving monolithic system-on-chip platform (SoCP). For past decades researchers focused on integrating magnetic materials into on-chip inductors in the quest of achieving high inductance density and quality factor (QF). The state of the art on-chip inductor is made of an enclosed magnetic thin-film around the current carrying wire for maximum flux amplification. Though the integration of magnetic materials results in enhanced inductor characteristics, this approach has its own challenges and limitations especially in power applications. The current-induced magnetic field (HDC) drives the magnetic film into its saturation state. At saturation, inductance and QF drop to that of air-core inductors, eliminating the benefits of integrating magnetic materials. Increasing the current carrying capability without substantially sacrificing benefits brought on by the magnetic material is an open challenge in power applications. Researchers continue to address this challenge along with the continuous improvement in inductance and QF for RF and power applications.

In this work on-chip inductors incorporating magnetic Co-4%Zr-4%Ta -8%B thin films were fabricated and their characteristics were examined under the influence of an externally applied DC magnetic field. It is well established that spins in magnetic materials tend to align themselves in the same direction as the applied field. The resistance of the inductor resulting from the ferromagnetic film can be changed by manipulating the orientation of magnetization. A reduction in resistance should lead to decreases in losses and an enhancement in the QF. The effect of externally applied DC magnetic field along the easy and hard axes was thoroughly investigated. Depending on the strength and orientation of the externally applied field significant improvements in QF response were gained at the expense of a relative reduction in inductance. Characteristics of magnetic-based inductors degrade with current-induced stress. It was found that applying an externally low DC magnetic field across the on-chip inductor prevents the degradation in inductance and QF responses. Examining the effect of DC magnetic field on current carrying capability under low temperature is suggested.
ContributorsKhdour, Mahmoud (Author) / Yu, Hongbin (Thesis advisor) / Pan, George (Committee member) / Goryll, Michael (Committee member) / Bearat, Hamdallah (Committee member) / Arizona State University (Publisher)
Created2014
153050-Thumbnail Image.png
Description
Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as

Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as gain standards for calibration and gain measurement of other antennas.

The gain and loss factor of conical horns are revisited in this dissertation based on

spherical and quadratic aperture phase distributions. The gain is compared with published classical data in an attempt to confirm their validity and accuracy and to determine whether they were derived based on spherical or quadratic aperture phase distributions. In this work, it is demonstrated that the gain of a conical horn antenna obtained by using a spherical phase distribution is in close agreement with published classical data. Moreover, more accurate expressions for the loss factor, to account for amplitude and phase tapers over the horn aperture, are derived. New formulas for the design of optimum gain conical horns, based on the more accurate spherical aperture phase distribution, are derived.

To better understand the impact of edge diffractions on aperture antenna performance, an extensive investigation of the edge diffractions impact is undertaken in this dissertation for commercial aperture antennas. The impact of finite uncoated and coated PEC ground plane edge diffractions on the amplitude patterns in the principal planes of circular apertures is intensively examined. Similarly, aperture edge diffractions of aperture antennas without ground planes are examined. Computational results obtained by the analytical model are compared with experimental and HFSS-simulated results for all cases studied. In addition, the impact of the ground plane size, coating thickness, and relative permittivity of the dielectric layer on the radiation amplitude in the back region has been examined.

This investigation indicates that the edge diffractions do impact the main forward lobe pattern, especially in the E plane. Their most significant contribution appears in far side and back lobes. This work demonstrates that the finite edge contributors must be considered to obtain more accurate amplitude patterns of aperture antennas.
ContributorsAboserwal, Nafati Abdasallam (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Pan, George (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
153028-Thumbnail Image.png
Description
This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and

This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and a wide variety of devices have been fabricated. One traditional way is to directly fabricate electronic devices on flexible substrate through low-temperature processes. These devices suffered from constrained functionality due to the temperature limit. Another transfer printing approach has been developed recently. The general idea is to fabricate functional devices on hard and planar substrates using standard processes then transferred by elastomeric stamps and printed on desired flexible and stretchable substrates. The main disadvantages are that the transfer printing step may limit the yield. The third method is "flexible skins" which silicon substrates are thinned down and structured into islands and sandwiched by two layers of polymer. The main advantage of this method is post CMOS compatible. Based on this technology, we successfully fabricated a 3-D flexible thermal sensor for intravascular flow monitoring. The final product of the 3-D sensor has three independent sensing elements equally distributed around the wall of catheter (1.2 mm in diameter) with 120° spacing. This structure introduces three independent information channels, and cross-comparisons among all readings were utilized to eliminate experimental error and provide better measurement results. The novel fabrication and assembly technology can also be applied to other catheter based biomedical devices. A step forward inspired by the ancient art of folding, origami, which creating three-dimensional (3-D) structures from two-dimensional (2-D) sheets through a high degree of folding along the creases. Based on this idea, we developed a novel method to enable better deformability. One example is origami-enabled silicon solar cells. The solar panel can reach up to 644% areal compactness while maintain reasonable good performance (less than 30% output power density drop) upon 40 times cyclic folding/unfolding. This approach can be readily applied to other functional devices, ranging from sensors, displays, antenna, to energy storage devices.
ContributorsTang, Rui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Pan, George (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153159-Thumbnail Image.png
Description
This thesis is a study of Bandwidth limitation of basestation power amplifier and its Doherty application. Fundamentally, bandwidth of a power amplifier (PA) is limited by both its input and output prematch networks and its Doherty architecture, specifically the impedance inverter between the main and auxiliary amplifier. In this study,

This thesis is a study of Bandwidth limitation of basestation power amplifier and its Doherty application. Fundamentally, bandwidth of a power amplifier (PA) is limited by both its input and output prematch networks and its Doherty architecture, specifically the impedance inverter between the main and auxiliary amplifier. In this study, only the output prematch network and the Doherty architecture follows are being investigated. A new proposed impedance inverter in the Doherty architecture exhibits an extended bandwidth compared to traditional quarterwave line.

Base on the loadline analysis, output impedance of the power amplifier can be represented by a loadline resistor and an output shunt capacitor. Base on this simple model, the maximum allowed bandwidth of the output impedance of the power amplifier can be estimated using the Bode-Fano method. However, since power amplifier is in fact nonlinear, harmonic balance simulation is used to loadpull the device across a broad range of frequencies. Base on the simulated large signal impedance at maximum power, the prematch circuitry can be designed. On a system level, the prematch power amplifier is used in Doherty amplifier. Two different prematch circuitries, T- section and shunt L methods are investigated along with their comparison in the Doherty architecture at both back off power and peak power condition. The last section of the thesis will be incorporating the proposed impedance inverter structure between the main and auxiliary amplifiers.

The simulated results showed the shunt L prematch topology has the least impedance dispersion across frequency. Along with the new impedance inverter structure, the 65% efficiency bandwidth improves by 50% compared to the original impedance inverter structure at back off power level.
ContributorsYang, Nick (Author) / Pan, George (Committee member) / Aberle, James T (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
150240-Thumbnail Image.png
Description
This thesis investigated two different thermal flow sensors for intravascular shear stress analysis. They were based on heat transfer principle, which heat convection from the resistively heated element to the flowing fluid was measured as a function of the changes in voltage. For both sensors, the resistively heated elements were

This thesis investigated two different thermal flow sensors for intravascular shear stress analysis. They were based on heat transfer principle, which heat convection from the resistively heated element to the flowing fluid was measured as a function of the changes in voltage. For both sensors, the resistively heated elements were made of Ti/Pt strips with the thickness 0.12 µm and 0.02 µm. The resistance of the sensing element was measured at approximately 1.6-1.7 kohms;. A linear relation between the resistance and temperature was established over the temperature ranging from 22 degree Celsius to 80 degree Celsius and the temperature coefficient of resistance (TCR) was at approximately 0.12 %/degree Celsius. The first thermal flow sensor was one-dimensional (1-D) flexible shear stress sensor. The structure was sensing element sandwiched by a biocompatible polymer "poly-para-xylylene", also known as Parylene, which provided both insulation of electrodes and flexibility of the sensors. A constant-temperature (CT) circuit was designed as the read out circuit based on 0.6 µm CMOS (Complementary metal-oxide-semiconductor) process. The 1-D shear stress sensor suffered from a large measurement error. Because when the sensor was inserted into blood vessels, it was impossible to mount the sensor to the wall as calibrated in micro fluidic channels. According to the previous simulation work, the shear stress was varying and the sensor itself changed the shear stress distribution. We proposed a three-dimensional (3-D) thermal flow sensor, with three-axis of sensing elements integrated in one sensor. It was in the similar shape as a hexagonal prism with diagonal of 1000 µm. On the top of the sensor, there were five bond pads for external wires over 500 µm thick silicon substrate. In each nonadjacent side surface, there was a bended parylene branch with one sensing element. Based on the unique 3-D structure, the sensor was able to obtain data along three axes. With computational fluid dynamics (CFD) model, it is possible to locate the sensor in the blood vessels and give us a better understanding of shear stress distribution in the presence of time-varying component of blood flow and realize more accurate assessment of intravascular convective heat transfer.
ContributorsTang, Rui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Pan, George (Committee member) / Arizona State University (Publisher)
Created2011