Matching Items (78)
157515-Thumbnail Image.png
Description
Reverse engineering is critical to reasoning about how a system behaves. While complete access to a system inherently allows for perfect analysis, partial access is inherently uncertain. This is the case foran individual agent in a distributed system. Inductive Reverse Engineering (IRE) enables analysis under

such circumstances. IRE does this by

Reverse engineering is critical to reasoning about how a system behaves. While complete access to a system inherently allows for perfect analysis, partial access is inherently uncertain. This is the case foran individual agent in a distributed system. Inductive Reverse Engineering (IRE) enables analysis under

such circumstances. IRE does this by producing program spaces consistent with individual input-output examples for a given domain-specific language. Then, IRE intersects those program spaces to produce a generalized program consistent with all examples. IRE, an easy to use framework, allows this domain-specific language to be specified in the form of Theorist s, which produce Theory s, a succinct way of representing the program space.

Programs are often much more complex than simple string transformations. One of the ways in which they are more complex is in the way that they follow a conversation-like behavior, potentially following some underlying protocol. As a result, IRE represents program interactions as Conversations in order to

more correctly model a distributed system. This, for instance, enables IRE to model dynamically captured inputs received from other agents in the distributed system.

While domain-specific knowledge provided by a user is extremely valuable, such information is not always possible. IRE mitigates this by automatically inferring program grammars, allowing it to still perform efficient searches of the program space. It does this by intersecting conversations prior to synthesis in order to understand what portions of conversations are constant.

IRE exists to be a tool that can aid in automatic reverse engineering across numerous domains. Further, IRE aspires to be a centralized location and interface for implementing program synthesis and automatic black box analysis techniques.
ContributorsNelson, Connor David (Author) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Wang, Ruoyu (Committee member) / Arizona State University (Publisher)
Created2019
157518-Thumbnail Image.png
Description
Visual applications – those that use camera frames as part of the application – provide a rich, context-aware experience. The continued development of mixed and augmented reality (MR/AR) computing environments furthers the richness of this experience by providing applications a continuous vision experience, where visual information continuously provides context for

Visual applications – those that use camera frames as part of the application – provide a rich, context-aware experience. The continued development of mixed and augmented reality (MR/AR) computing environments furthers the richness of this experience by providing applications a continuous vision experience, where visual information continuously provides context for applications and the real world is augmented by the virtual. To understand user privacy concerns in continuous vision computing environments, this work studies three MR/AR applications (augmented markers, augmented faces, and text capture) to show that in a modern mobile system, the typical user is exposed to potential mass collection of sensitive information, posing privacy and security deficiencies to be addressed in future systems.

To address such deficiencies, a development framework is proposed that provides resource isolation between user information contained in camera frames and application access to the network. The design is implemented using existing system utilities as a proof of concept on the Android operating system and demonstrates its viability with a modern state-of-the-art augmented reality library and several augmented reality applications. Evaluation is conducted on the design on a Samsung Galaxy S8 phone by comparing the applications from the case study with modified versions which better protect user privacy. Early results show that the new design efficiently protects users against data collection in MR/AR applications with less than 0.7% performance overhead.
ContributorsJensen, Jk (Author) / LiKamWa, Robert (Thesis advisor) / Doupe, Adam (Committee member) / Wang, Ruoyu (Committee member) / Arizona State University (Publisher)
Created2019
158121-Thumbnail Image.png
Description
Utilities infrastructure like the electric grid have been the target of more sophisticated cyberattacks designed to disrupt their operation and create social unrest and economical losses. Just in 2016, a cyberattack targeted the Ukrainian power grid and successfully caused a blackout that affected 225,000 customers.

Industrial Control Systems (ICS) are

Utilities infrastructure like the electric grid have been the target of more sophisticated cyberattacks designed to disrupt their operation and create social unrest and economical losses. Just in 2016, a cyberattack targeted the Ukrainian power grid and successfully caused a blackout that affected 225,000 customers.

Industrial Control Systems (ICS) are a critical part of this infrastructure. Honeypots are one of the tools that help us capture attack data to better understand new and existing attack methods and strategies. Honeypots are computer systems purposefully left exposed to be broken into. They do not have any inherent value, instead, their value comes when attackers interact with them. However, state-of-the-art honeypots lack sophisticated service simulations required to obtain valuable data.

Worst, they cannot adapt while ICS malware keeps evolving and attacks patterns are increasingly more sophisticated.

This work presents HoneyPLC: A Next-Generation Honeypot for ICS. HoneyPLC is, the very first medium-interaction ICS honeypot, and includes advanced service simulation modeled after S7-300 and S7-1200 Siemens PLCs, which are widely used in real-life ICS infrastructures.

Additionally, HoneyPLC provides much needed extensibility features to prepare for new attack tactics, e.g., exploiting a new vulnerability found in a new PLC model.

HoneyPLC was deployed both in local and public environments, and tested against well-known reconnaissance tools used by attackers such as Nmap and Shodan's Honeyscore. Results show that HoneyPLC is in fact able to fool both tools with a high level of confidence. Also, HoneyPLC recorded high amounts of interesting ICS interactions from all around the globe, proving not only that attackers are in fact targeting ICS systems, but that HoneyPLC provides a higher level of interaction that effectively deceives them.
ContributorsLopez Morales, Efren (Author) / Doupe, Adam (Thesis advisor) / Ahn, Gail-Joon (Thesis advisor) / Rubio-Medrano, Carlos (Committee member) / Arizona State University (Publisher)
Created2020
158081-Thumbnail Image.png
Description
Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational

Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational nature of the infrastructure abused for phishing, and discrepancies between theoretical and realistic anti-phishing systems. Although technical countermeasures cannot always compensate for the human weakness exploited by social engineers, maintaining a clear and up-to-date understanding of the motivation behind---and execution of---modern phishing attacks is essential to optimizing such countermeasures.

In this dissertation, I analyze the state of the anti-phishing ecosystem and show that phishers use evasion techniques, including cloaking, to bypass anti-phishing mitigations in hopes of maximizing the return-on-investment of their attacks. I develop three novel, scalable data-collection and analysis frameworks to pinpoint the ecosystem vulnerabilities that sophisticated phishing websites exploit. The frameworks, which operate on real-world data and are designed for continuous deployment by anti-phishing organizations, empirically measure the robustness of industry-standard anti-phishing blacklists (PhishFarm and PhishTime) and proactively detect and map phishing attacks prior to launch (Golden Hour). Using these frameworks, I conduct a longitudinal study of blacklist performance and the first large-scale end-to-end analysis of phishing attacks (from spamming through monetization). As a result, I thoroughly characterize modern phishing websites and identify desirable characteristics for enhanced anti-phishing systems, such as more reliable methods for the ecosystem to collectively detect phishing websites and meaningfully share the corresponding intelligence. In addition, findings from these studies led to actionable security recommendations that were implemented by key organizations within the ecosystem to help improve the security of Internet users worldwide.
ContributorsOest, Adam (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Johnson, RC (Committee member) / Arizona State University (Publisher)
Created2020
158101-Thumbnail Image.png
Description
Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people, still has an issue of safety. Driver distraction is becoming a critical safety problem. Speed, drunk driving as well as

Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people, still has an issue of safety. Driver distraction is becoming a critical safety problem. Speed, drunk driving as well as distracted driving are the three leading factors in the fatal car crashes. Distraction, which is defined as an excessive workload and limited attention, is the main paradigm that guides this research area. Driver behavior analysis can be used to address the distraction problem and provide an intelligent adaptive agent to work closely with the driver, fay beyond traditional algorithmic computational models. A variety of machine learning approaches has been proposed to estimate or predict drivers’ fatigue level using car data, driver status or a combination of them.

Three important features of intelligence and cognition are perception, attention and sensory memory. In this thesis, I focused on memory and attention as essential parts of highly intelligent systems. Without memory, systems will only show limited intelligence since their response would be exclusively based on spontaneous decision without considering the effect of previous events. I proposed a memory-based sequence to predict the driver behavior and distraction level using neural network. The work started with a large-scale experiment to collect data and make an artificial intelligence-friendly dataset. After that, the data was used to train a deep neural network to estimate the driver behavior. With a focus on memory by using Long Short Term Memory (LSTM) network to increase the level of intelligence in two dimensions: Forgiveness of minor glitches, and accumulation of anomalous behavior., I reduced the model error and computational expense by adding attention mechanism on the top of LSTM models. This system can be generalized to build and train highly intelligent agents in other domains.
ContributorsMonjezi Kouchak, Shokoufeh (Author) / Gaffar, Ashraf (Thesis advisor) / Doupe, Adam (Committee member) / Ben Amor, Hani (Committee member) / Cheeks, Loretta (Committee member) / Arizona State University (Publisher)
Created2020
158752-Thumbnail Image.png
Description
The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security countermeasures, can lead to security policy and service level agreement

The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security countermeasures, can lead to security policy and service level agreement violations. In this thesis, I explore the research questions 1) how to model attacker-defender interactions for multi-stage attacks? 2) how to efficiently deploy proactive (MTD) security countermeasures in a software-defined environment for single and multi-stage attacks? 3) how to verify the effects of security and management policies on the network and take corrective actions?

I propose a Software-defined Situation-aware Cloud Security framework, that, 1) analyzes the attacker-defender interactions using an Software-defined Networking (SDN) based scalable attack graph. This research investigates Advanced Persistent Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel graph partitioning algorithm to generate an attack graph quickly and efficiently. 2) models single-stage and multi-stage attacks (APTs) using the game-theoretic model and provides SDN-based MTD countermeasures. I propose a Markov Game for modeling multi-stage attacks. 3) introduces a multi-stage policy conflict checking framework at the SDN network's application plane. I present INTPOL, a new intent-driven security policy enforcement solution. INTPOL provides a unified language and INTPOL grammar that abstracts the network administrator from the underlying network controller's lexical rules. INTPOL develops a bounded formal model for network service compliance checking, which significantly reduces the number of countermeasures that needs to be deployed. Once the application-layer policy conflicts are resolved, I utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies and resolves rule-order dependencies and conflicts between security policies.
ContributorsChowdhary, Ankur (Author) / Huang, Dijiang (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Doupe, Adam (Committee member) / Bao, Youzhi (Committee member) / Arizona State University (Publisher)
Created2020
158545-Thumbnail Image.png
Description
Due to the increase in computer and database dependency, the damage caused by malicious codes increases. Moreover, gravity and the magnitude of malicious attacks by hackers grow at an unprecedented rate. A key challenge lies on detecting such malicious attacks and codes in real-time by the use of existing methods,

Due to the increase in computer and database dependency, the damage caused by malicious codes increases. Moreover, gravity and the magnitude of malicious attacks by hackers grow at an unprecedented rate. A key challenge lies on detecting such malicious attacks and codes in real-time by the use of existing methods, such as a signature-based detection approach. To this end, computer scientists have attempted to classify heterogeneous types of malware on the basis of their observable characteristics. Existing literature focuses on classifying binary codes, due to the greater accessibility of malware binary than source code. Also, for the improved speed and scalability, machine learning-based approaches are widely used. Despite such merits, the machine learning-based approach critically lacks the interpretability of its outcome, thus restricts understandings of why a given code belongs to a particular type of malicious malware and, importantly, why some portions of a code are reused very often by hackers. In this light, this study aims to enhance understanding of malware by directly investigating reused codes and uncovering their characteristics.

To examine reused codes in malware, both malware with source code and malware with binary code are considered in this thesis. For malware with source code, reused code chunks in the Mirai botnet. This study lists frequently reused code chunks and analyzes the characteristics and location of the code. For malware with binary code, this study performs reverse engineering on the binary code for human readers to comprehend, visually inspects reused codes in binary ransomware code, and illustrates the functionality of the reused codes on the basis of similar behaviors and tactics.

This study makes a novel contribution to the literature by directly investigating the characteristics of reused code in malware. The findings of the study can help cybersecurity practitioners and scholars increase the performance of malware classification.
ContributorsLEe, Yeonjung (Author) / Bao, Youzhi (Thesis advisor) / Doupe, Adam (Committee member) / Shoshitaishvili, Yan (Committee member) / Arizona State University (Publisher)
Created2020
158486-Thumbnail Image.png
Description
The Java programing language was implemented in such a way as to limit the amount of possible ways that a program written in Java could be exploited. Unfortunately, all of the protections and safeguards put in place for Java can be circumvented if a program created in Java utilizes

The Java programing language was implemented in such a way as to limit the amount of possible ways that a program written in Java could be exploited. Unfortunately, all of the protections and safeguards put in place for Java can be circumvented if a program created in Java utilizes internal or external libraries that were created in a separate, insecure language such as C or C++. A secure Java program can then be made insecure and susceptible to even classic vulnerabilities such as stack overflows, string format attacks, and heap overflows and corruption. Through the internal or external libraries included in the Java program, an attacker could potentially hijack the execution flow of the program. Once the Attacker has control of where and how the program executes, the attacker can spread their influence to the rest of the system.

However, since these classic vulnerabilities are known weaknesses, special types of protections have been added to the compilers which create the executable code and the systems that run them. The most common forms of protection include Address SpaceLayout Randomization (ASLR), Non-eXecutable stack (NX Stack), and stack cookies or canaries. Of course, these protections and their implementations vary depending on the system. I intend to look specifically at the Android operating system which is used in the daily lives of a significant portion of the planet. Most Android applications execute in a Java context and leave little room for exploitability, however, there are also many applications which utilize external libraries to handle more computationally intensive tasks.

The goal of this thesis is to take a closer look at such applications and the protections surrounding them, especially how the default system protections as mentioned above are implemented and applied to the vulnerable external libraries. However, this is only half of the problem. The attacker must get their payload inside of the application in the first place. Since it is necessary to understand how this is occurring, I will also be exploring how the Android operating system gives outside information to applications and how developers have chosen to use that information.
ContributorsGibbs, William (Author) / Doupe, Adam (Thesis advisor) / Wang, Ruoyu (Committee member) / Shoshitaishvilli, Yan (Committee member) / Arizona State University (Publisher)
Created2020
158251-Thumbnail Image.png
Description
The lack of fungibility in Bitcoin has forced its userbase to seek out tools that can heighten their anonymity. Third-party Bitcoin mixers utilize obfuscation techniques to protect participants from blockchain analysis. In recent years, various centralized and decentralized Bitcoin mixing implementations have been proposed in academic literature. Although these methods

The lack of fungibility in Bitcoin has forced its userbase to seek out tools that can heighten their anonymity. Third-party Bitcoin mixers utilize obfuscation techniques to protect participants from blockchain analysis. In recent years, various centralized and decentralized Bitcoin mixing implementations have been proposed in academic literature. Although these methods depict a threat-free environment for users to preserve their anonymity, public Bitcoin mixers continue to be associated with theft and poor implementation.

This research explores the public Bitcoin mixer ecosystem to identify if today's mixing services have adopted academically proposed solutions. This is done through real-world interactions with publicly available mixers to analyze both implementation and resistance to common threats in the mixing landscape. First, proposed decentralized and centralized mixing protocols found in literature are outlined. Then, data is presented from 19 publicly announced mixing services available on the deep web and clearnet. The services are categorized based on popularity with the Bitcoin community and experiments are conducted on five public mixing services: ChipMixer, MixTum, Bitcoin Mixer, CryptoMixer, and Sudoku Wallet.

The results of the experiments highlight a clear gap between public and proposed Bitcoin mixers in both implementation and security. Today's mixing services focus on presenting users with a false sense of control to gain their trust rather then employing secure mixing techniques. As a result, the five selected services lack implementation of academically proposed techniques and display poor resistance to common mixer-related threats.
ContributorsPakki, Jaswant (Author) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Wang, Ruoyu (Committee member) / Arizona State University (Publisher)
Created2020
161278-Thumbnail Image.png
Description
Cyberspace has become a field where the competitive arms race between defenders and adversaries play out. Adaptive, intelligent adversaries are crafting new responses to the advanced defenses even though the arms race has resulted in a gradual improvement of the security posture. This dissertation aims to assess the evolving threat

Cyberspace has become a field where the competitive arms race between defenders and adversaries play out. Adaptive, intelligent adversaries are crafting new responses to the advanced defenses even though the arms race has resulted in a gradual improvement of the security posture. This dissertation aims to assess the evolving threat landscape and enhance state-of-the-art defenses by exploiting and mitigating two different types of emerging security vulnerabilities. I first design a new cache attack method named Prime+Count which features low noise and no shared memory needed.I use the method to construct fast data covert channels. Then, I propose a novel software-based approach, SmokeBomb, to prevent cache side-channel attacks for inclusive and non-inclusive caches based on the creation of a private space in the L1 cache. I demonstrate the effectiveness of SmokeBomb by applying it to two different ARM processors with different instruction set versions and cache models and carry out an in-depth evaluation. Next, I introduce an automated approach that exploits a stack-based information leak vulnerability in operating system kernels to obtain sensitive data. Also, I propose a lightweight and widely applicable runtime defense, ViK, for preventing temporal memory safety violations which can lead attackers to have arbitrary code execution or privilege escalation together with information leak vulnerabilities. The security impact of temporal memory safety vulnerabilities is critical, but,they are difficult to identify because of the complexity of real-world software and the spatial separation of allocation and deallocation code. Therefore, I focus on preventing not the vulnerabilities themselves, but their exploitation. ViK can effectively protect operating system kernels and user-space programs from temporal memory safety violations, imposing low runtime and memory overhead.
ContributorsCho, Haehyun (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Wang, Ruoyu (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2021