Matching Items (389)
Filtering by

Clear all filters

141488-Thumbnail Image.png
Description

Background: The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers.

Method:Participants were children ages 5-16 years in Arizona with Autistic

Background: The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers.

Method:Participants were children ages 5-16 years in Arizona with Autistic Spectrum Disorder (n = 55) compared with non-sibling, neurotypical controls (n = 44) of similar age, gender and geographical distribution. Neither group had taken any vitamin/mineral supplements in the two months prior to sample collection. Autism severity was assessed using the Pervasive Development Disorder Behavior Inventory (PDD-BI), Autism Treatment Evaluation Checklist (ATEC), and Severity of Autism Scale (SAS). Study measurements included: vitamins, biomarkers of vitamin status, minerals, plasma amino acids, plasma glutathione, and biomarkers of oxidative stress, methylation, sulfation and energy production.

Results: Biomarkers of children with autism compared to those of controls using a t-test or Wilcoxon test found the following statistically significant differences (p < 0.001): Low levels of biotin, plasma glutathione, RBC SAM, plasma uridine, plasma ATP, RBC NADH, RBC NADPH, plasma sulfate (free and total), and plasma tryptophan; also high levels of oxidative stress markers and plasma glutamate. Levels of biomarkers for the neurotypical controls were in good agreement with accessed published reference ranges. In the Autism group, mean levels of vitamins, minerals, and most amino acids commonly measured in clinical care were within published reference ranges. A stepwise, multiple linear regression analysis demonstrated significant associations between several groups of biomarkers with all three autism severity scales, including vitamins (adjusted R[superscript 2] of 0.25-0.57), minerals (adj. R[superscript 2] of 0.22-0.38), and plasma amino acids (adj. R[superscript 2] of 0.22-0.39).

Conclusion: The autism group had many statistically significant differences in their nutritional and metabolic status, including biomarkers indicative of vitamin insufficiency, increased oxidative stress, reduced capacity for energy transport, sulfation and detoxification. Several of the biomarker groups were significantly associated with variations in the severity of autism. These nutritional and metabolic differences are generally in agreement with other published results and are likely amenable to nutritional supplementation. Research investigating treatment and its relationship to the co-morbidities and etiology of autism is warranted.

ContributorsAdams, James (Author) / Audhya, Tapan (Author) / McDonough-Means, Sharon (Author) / Rubin, Robert A. (Author) / Quig, David (Author) / Geis, Elizabeth (Author) / Gehn, Eva (Author) / Loresto, Melissa (Author) / Mitchell, Jessica (Author) / Atwood, Sharon (Author) / Barnhouse, Suzanne (Author) / Lee, Wondra (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-06-08
141491-Thumbnail Image.png
Description

Background: Children with autism have often been reported to have gastrointestinal problems that are more frequent and more severe than in children from the general population.

Methods: Gastrointestinal flora and gastrointestinal status were assessed from stool samples of 58 children with Autism Spectrum Disorders (ASD) and 39 healthy typical children of similar ages.

Background: Children with autism have often been reported to have gastrointestinal problems that are more frequent and more severe than in children from the general population.

Methods: Gastrointestinal flora and gastrointestinal status were assessed from stool samples of 58 children with Autism Spectrum Disorders (ASD) and 39 healthy typical children of similar ages. Stool testing included bacterial and yeast culture tests, lysozyme, lactoferrin, secretory IgA, elastase, digestion markers, short chain fatty acids (SCFA's), pH, and blood presence. Gastrointestinal symptoms were assessed with a modified six-item GI Severity Index (6-GSI) questionnaire, and autistic symptoms were assessed with the Autism Treatment Evaluation Checklist (ATEC).

Results: Gastrointestinal symptoms (assessed by the 6-GSI) were strongly correlated with the severity of autism (assessed by the ATEC), (r = 0.59, p < 0.001). Children with 6-GSI scores above 3 had much higher ATEC Total scores than those with 6-GSI-scores of 3 or lower (81.5 +/- 28 vs. 49.0 +/- 21, p = 0.00002).
Children with autism had much lower levels of total short chain fatty acids (-27%, p = 0.00002), including lower levels of acetate, proprionate, and valerate; this difference was greater in the children with autism taking probiotics, but also significant in those not taking probiotics. Children with autism had lower levels of species of Bifidobacter (-43%, p = 0.002) and higher levels of species of Lactobacillus (+100%, p = 0.00002), but similar levels of other bacteria and yeast using standard culture growth-based techniques. Lysozyme was somewhat lower in children with autism (-27%, p = 0.04), possibly associated with probiotic usage. Other markers of digestive function were similar in both groups.

Conclusions: The strong correlation of gastrointestinal symptoms with autism severity indicates that children with more severe autism are likely to have more severe gastrointestinal symptoms and vice versa. It is possible that autism symptoms are exacerbated or even partially due to the underlying gastrointestinal problems. The low level of SCFA's was partly associated with increased probiotic use, and probably partly due to either lower production (less sacchrolytic fermentation by beneficial bacteria and/or lower intake of soluble fiber) and/or greater absorption into the body (due to longer transit time and/or increased gut permeability).

ContributorsAdams, James (Author) / Johansen, Leah (Author) / Powell, Linda (Author) / Quig, David (Author) / Rubin, Robert A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-03-16
141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
160097-Thumbnail Image.png
Description

Arizona State University (ASU) is known for both enormous size and scale, as well as excellence in research and innovation. These attributes are embodied in the ideal of the “New American University.” ASU Library, as a partner in the New American University, has reorganized itself, completed a large-scale renovation of

Arizona State University (ASU) is known for both enormous size and scale, as well as excellence in research and innovation. These attributes are embodied in the ideal of the “New American University.” ASU Library, as a partner in the New American University, has reorganized itself, completed a large-scale renovation of its main library building, and created interdisciplinary divisions of librarians and other professionals, backed up by subject “knowledge teams” that address specific research needs of faculty and students. As a result, the library has become involved in nontraditional projects across the university. This article is useful for libraries seeking to remain relevant and align themselves with institutional priorities.

ContributorsLeaming Malecki, Allison (Author) / Edens, Wes (Author) / Bonanni, Mimmo (Author) / Doan, Tomalee (Author)
128735-Thumbnail Image.png
Description

The R-specific alcohol dehydrogenase (ADH) from Lactobacillus brevis LB19 (LbADH) was studied with respect to its ability to reduce a series of 3- through 5-carbon 2-alkanones and aldehydes of relevance as biofuel precursors. Although active on all substrates tested, LbADH displays a marked preference for longer chain substrates. Interestingly, however,

The R-specific alcohol dehydrogenase (ADH) from Lactobacillus brevis LB19 (LbADH) was studied with respect to its ability to reduce a series of 3- through 5-carbon 2-alkanones and aldehydes of relevance as biofuel precursors. Although active on all substrates tested, LbADH displays a marked preference for longer chain substrates. Interestingly, however, 2-alkanones were found to impose substrate inhibition towards LbADH, whereas aldehyde substrates rendered no such effect. Inhibition caused by 2-alkanones was furthermore found to intensify with increasing chain length. Despite demonstrating both primary and secondary ADH activities, a preliminary sequence analysis suggests that LbADH remains distinct from other, previously characterized primary-secondary ADHs. In addition to further characterizing the substrate range of this industrially important enzyme, this study suggests that LbADH has the potential to serve as a useful enzyme for the engineering of various novel alcohol biofuel pathways.

ContributorsHalloum, Ibrahim (Author) / Thompson, Brian (Author) / Pugh, Shawn (Author) / Nielsen, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-08-05
128727-Thumbnail Image.png
Description

Presented in this paper is a bi-directional out-of-plane actuator which combines the merits of the electrostatic repulsive principle and the electrostatic attractive principle. By taking advantage of the electrostatic repulsive mode, the common “pull-in” instability can be lessened to enlarge the displacement, and by applying the electrostatic attractive mode, the

Presented in this paper is a bi-directional out-of-plane actuator which combines the merits of the electrostatic repulsive principle and the electrostatic attractive principle. By taking advantage of the electrostatic repulsive mode, the common “pull-in” instability can be lessened to enlarge the displacement, and by applying the electrostatic attractive mode, the out-of-plane displacement is further enlarged. The implications of changing the actuator’s physical dimensions are discussed, along with the two-layer polysilicon surface microfabrication process used to fabricate such an actuator. The static characteristics of the out-of-plane displacement versus the voltage of both modes are tested, and displacements of 1.4 μm and 0.63 μm are obtained at 130 V and 15 V, respectively. Therefore, a total stroke of 2.03 μm is achieved, more than 3 fold that of the electrostatic attractive mode, making this actuator useful in optical Micro-Electro-Mechanical Systems (MEMS) and Radio Frequency (RF) MEMS applications.

ContributorsRen, Hao (Author) / Wang, Weimin (Author) / Tao, Fenggang (Author) / Yao, Jun (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-12-05
128723-Thumbnail Image.png
Description

Recent studies have reported a greater prevalence of spin turns, which are more unstable than step turns, in older adults compared to young adults in laboratory settings. Currently, turning strategies can only be identified through visual observation, either in-person or through video. This paper presents two unique methods and their

Recent studies have reported a greater prevalence of spin turns, which are more unstable than step turns, in older adults compared to young adults in laboratory settings. Currently, turning strategies can only be identified through visual observation, either in-person or through video. This paper presents two unique methods and their combination to remotely monitor turning behavior using three uniaxial gyroscopes. Five young adults performed 90° turns at slow, normal, and fast walking speeds around a variety of obstacles while instrumented with three IMUs (attached on the trunk, left and right shank). Raw data from 360 trials were analyzed. Compared to visual classification, the two IMU methods’ sensitivity/specificity to detecting spin turns were 76.1%/76.7% and 76.1%/84.4%, respectively. When the two methods were combined, the IMU had an overall 86.8% sensitivity and 92.2% specificity, with 89.4%/100% sensitivity/specificity at slow speeds. This combined method can be implemented into wireless fall prevention systems and used to identify increased use of spin turns. This method allows for longitudinal monitoring of turning strategies and allows researchers to test for potential associations between the frequency of spin turns and clinically relevant outcomes (e.g., falls) in non-laboratory settings.

ContributorsFino, Peter C. (Author) / Frames, Christopher W. (Author) / Lockhart, Thurmon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-06
129236-Thumbnail Image.png
Description

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its adverse impacts on human health and environmental quality. As PCE use is curtailed, effective alternatives must be analyzed for their toxicity and impacts to human health and the environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established and scored performance criteria, including chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of each system, and cleaning efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced human toxicity and a lesser adverse impact on human health and the environment compared to PCE, with comparable capital investments, and moderately higher annual operating costs.

ContributorsHesari, Nikou (Author) / Francis, Chelsea (Author) / Halden, Rolf (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-03
129245-Thumbnail Image.png
Description

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

ContributorsChang, Jui-Yung (Author) / Basu, Soumyadipta (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-07
128252-Thumbnail Image.png
Description

The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel,

The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control.

ContributorsAlum, Absar (Author) / Absar, Isra M. (Author) / Asaad, Hamas (Author) / Rubino, Joseph R. (Author) / Ijaz, M. Khalid (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-06-17