Matching Items (2,737)
Filtering by

Clear all filters

136279-Thumbnail Image.png
Description
There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students

There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students from the graduating class of 2011 in a rural area of Arizona. Results from the interviews found that the rural students consider the perception of importance of a college degree, parental influence, and self-discovery as important factors in the decision making process. In addition, not all non-college-going students felt that college was necessary for a better quality of living, but did express desire for more development opportunities while in high school. The findings resulted in the following recommendations for local educators to help students better navigate the college decision process: teach parents how to have more meaningful conversations, provide step-by-step assistance to students about the college application process, and provide more opportunities for self/educational/career development to students.
ContributorsCrow, Ellyse Diann (Author) / Wang, Lili (Thesis director) / Hollin, Michelle (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / School of Community Resources and Development (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2015-05
133958-Thumbnail Image.png
Description
The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years later, on the exact anniversary of the devastating earthquake, Mexico City was once again jolted by a 7.1 magnitude earthquake. Although still significant, the 2017 earthquake collapsed only about a tenth of the buildings collapsed by the 1985 Earthquake, and in turn resulted in a lower death toll. Even though these earthquakes struck in the same seismic region, their effects were vastly different. This thesis completes a comparison between the two earthquakes focusing on the structural impacts including background on Mexico City's unique geology, basic concepts necessary to understand the response of structures to earthquake excitation, and structural failure modes observed in both earthquakes. The thesis will also discuss the earthquake's fundamental differences that led to the discrepancy in structural damage and ultimately in lower death tolls. Of those discussed, is the types of buildings that were targeted and collapsed. In 1985, buildings with 6 or more floors had the highest damage category. Resonance frequencies of these buildings were similar to the resonance frequencies of the subsoil, leading to amplified oscillations, and ultimately in failure. The 2017 earthquake did not have as much distance from the epicenter for the high frequency seismic waves to be absorbed. In contrast, the shorter, faster waves that reached the capital affected smaller buildings, and spared most tall buildings.
ContributorsGonzalez, Diana Laura (Author) / Hjelmstad, Keith (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136945-Thumbnail Image.png
Description
This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often

This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often cited as one of the most important statistics when making budget decisions. Many academic programs are ill-equipped to perform this task, however, as their personnel are not trained as recruiters, but rather as professors and industry professionals; furthermore, the university-level recruitment staff faces the impossible task of advertising every department's recruitment message. The Del E. Webb School of Construction has embarked upon a journey to create industry-based marketing materials to aid them in their recruitment efforts. Construction management (CM) has traditionally been viewed as a technology major relegated to vocational students and those not fit for baccalaureate programs. In recent years that perception has changed, however, as the industry has become increasingly complex and CM programs actively work to recruit students. In an attempt to increase that recruitment, the Del E. Webb School has created marketing materials that are signature to the program featuring the world's most widely-used building material, concrete, to create a keepsake for prospective students. This keepsake comes in the form of concrete replicas of the new ASU Pitchfork logo. These pitchforks are small and designed to be mass produced so that they can be handed out at recruitment events either on campus or in local schools. The Del E. Webb School had previously experimented with flexible rubber molds and flowable mixtures, such that the models could be easily cast and rapidly demolded and reset for casting. There were issues, however, as those pitchforks did not meet desired level of quality and were difficult to reproduce. This thesis thus describes an experimental program examining different casting and demolding regimens in an attempt to find the optimal way to create the pitchforks on a consistent basis. Following this, an operations manual for how to create the pitchforks was created in order to ensure that successive cohorts of construction students can reproduce the pitchforks in preparation for the School's annual recruitment events.
ContributorsErnzen, John Alexander (Author) / Wiezel, Avi (Thesis director) / Rogers, James (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134402-Thumbnail Image.png
Description
The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.
ContributorsLockhart, Laura E. (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134754-Thumbnail Image.png
Description
The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a

The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a curiosity in the design of wood frames for homes and the residential industry as a whole. Since then, I have also had the opportunity to intern for Felten Group, an architecture, engineering, and forensics firm specializing in residential work. A residential roof structure is designed following the American Society of Civil Engineer's Minimum Design Loads for Buildings and Other Structures design code, in addition to the National Design Standards for Wood Construction manual. Although the sub discipline of wooden structural design can often be disregarded as the simplest type of analysis, I believe that it is a key component of an education in structural engineering. Like all aspects of civil engineering, the design of a house is composed of many interconnected systems, which include the balance of structural integrity and cost, functionality and aesthetics, and light and space. For my creative project, I took these ideas into account when designing both the floor plan and roof structure of the house using Revit and RISA, respectively. Well-rounded engineers are not only technically competent, but they also understand the social dimensions of a problem and how all the systems work together. The project focuses on creating a cohesive representation of a structure as a whole and how the individual frames, trusses, and beams interact with one another using RISA, a structural analysis program. With RISA's 3D interface, I have a better understanding of how more complex structures behave, which I have not gained from my 2D perspective in classes. RISA is used to calculate support reactions and the deflections of the trusses, which are checked against the bearing capacities of the supports and deflection design criteria to ensure a safe design. Concepts such as tributary area, truss connections, and the behavior of girder systems are also explored through the process.
Created2016-12
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137582-Thumbnail Image.png
Description
Memory augmentation will play a vital role in the development of our future. The predicted introduction of downloadable brains will be the first of many neurocognitive technologies that will alter our lives at both the societal and individual levels. These technologies can affect everything from educational institutions to the judicial

Memory augmentation will play a vital role in the development of our future. The predicted introduction of downloadable brains will be the first of many neurocognitive technologies that will alter our lives at both the societal and individual levels. These technologies can affect everything from educational institutions to the judicial system, meanwhile raising issues such as autonomy, human psychology, and selfhood. Because of its tremendous potential, memory augmentation and its implications should thoroughly be examined.
ContributorsKim, Jinkyu (Author) / McGregor, Joan (Thesis director) / Robert, Jason (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
135622-Thumbnail Image.png
Description
Women have evolved in the engineering profession over the decades. However, there is still a lot more room for female presence in the industry as women currently make up about 12-15% of working engineers. Based on many studies and surveys, it is clear that female confidence in their own performance

Women have evolved in the engineering profession over the decades. However, there is still a lot more room for female presence in the industry as women currently make up about 12-15% of working engineers. Based on many studies and surveys, it is clear that female confidence in their own performance and a feeling of belonging in the industry has evolved for the better. The studies and surveys also show that women still lack a certain confidence to get their engineering degree and then to pursue a career in engineering once they receive their degree. Research shows that the main cause for this is due to the stereotype that engineering is a masculine profession. Men and women both have this mindset because it has become a societal norm that most people go along with and do not even realize it. Unfortunately, it is very hard to overcome and change a societal norm, therefore, something needs to be done in order to fix this mindset. (Crawford). Based on studies and research, there are many ways the stereotype is being combatted. Social media has become a huge component in advocating for female engineers. Men and women are helping to fight the status quo by supporting female engineers and lobbying against people who think women do not belong in the industry. Industry professionals are teaming up with schools to figure out ways to make STEM programs more exciting for all young kids, but especially girls. They are also working to provide more mentors and role models for young girls in order to cheer them on and make them more confident in their abilities when learning and applying the STEM curriculum, as studies have proven that providing young girls with mentors can really help foster more female engineers in the long run. (Crawford). With all of the positive support and promotions of female engineers in the past few years, it is evident that women can certainly progress at a much faster pace than in previous decades.
ContributorsAcosta, Jazlyn (Co-author) / Venne, Hunter (Co-author) / Ward, Kristen (Thesis director) / Lou, Yingyan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

ContributorsTurner, Natalie Ann (Co-author) / Kuta, Tiffany (Co-author) / Jones, Cassity (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsKuta, Tiffany T (Co-author) / Jones, Cassity (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05