Matching Items (31)
153221-Thumbnail Image.png
Description
This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that

This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that simulate individual daily activity-travel patterns through the prediction of day-level and tour-level activity agendas. These tour level activity-based models adopt a discrete time representation of activities and sequence the activities within tours using rule-based heuristics. An alternate stream of activity-based model systems mostly confined to the research arena are activity scheduling systems that adopt an evolutionary continuous-time approach to model activity participation subject to time-space prism constraints. In this research, a tour characterization framework capable of simulating and sequencing activities in tours along the continuous time dimension is developed and implemented using readily available travel survey data. The proposed framework includes components for modeling the multitude of secondary activities (stops) undertaken as part of the tour, the time allocated to various activities in a tour, and the sequence in which the activities are pursued.

Second, the dissertation focuses on the implementation of a vehicle fleet composition model component that can be used not only to simulate the mix of vehicle types owned by households but also to identify the specific vehicle that will be used for a specific tour. Virtually all of the activity-based models in practice only model the choice of mode without due consideration of the type of vehicle used on a tour. In this research effort, a comprehensive vehicle fleet composition model system is developed and implemented. In addition, a primary driver allocation model and a tour-level vehicle type choice model are developed and estimated with a view to advancing the ability to track household vehicle usage through the course of a day within activity-based travel model systems. It is envisioned that these advances will enhance the fidelity of activity-based travel model systems in practice.
ContributorsGarikapati, Venu Madhav (Author) / Pendyala, Ram M. (Thesis advisor) / Zhou, Xuesong (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2014
156252-Thumbnail Image.png
Description
Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public

Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public transit systems provide high-quality ridesharing schedules/services and (2) the upcoming optimal activity planning systems offer the best vehicle routing and assignment for household daily scheduled activities.

The high quality of system observability is the fundamental guarantee for accurately predicting and controlling the system. The rich information from the emerging heterogeneous data sources is making it possible. This research proposes a modeling framework to systemically account for the multi-source sensor information in urban transit systems to quantify the estimated state uncertainty. A system of linear equations and inequalities is proposed to generate the information space. Also, the observation errors are further considered by a least square model. Then, a number of projection functions are introduced to match the relation between the unique information space and different system states, and its corresponding state estimate uncertainties are further quantified by calculating its maximum state range.

In addition to optimizing daily operations, the continuing advances in information technology provide precious individual travel behavior data and trip information for operational planning in transit systems. This research also proposes a new alternative modeling framework to systemically account for boundedly rational decision rules of travelers in a dynamic transit service network with tight capacity constraints. An agent-based single-level integer linear formulation is proposed and can be effectively by the Lagrangian decomposition.

The recently emerging trend of self-driving vehicles and information sharing technologies starts creating a revolutionary paradigm shift for traveler mobility applications. By considering a deterministic traveler decision making framework, this research addresses the challenges of how to optimally schedule household members’ daily scheduled activities under the complex household-level activity constraints by proposing a set of integer linear programming models. Meanwhile, in the microscopic car-following level, the trajectory optimization of autonomous vehicles is also studied by proposing a binary integer programming model.
ContributorsLiu, Jiangtao (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Mirchandani, Pitu (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2018
156668-Thumbnail Image.png
Description
Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel

Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel time by issuing a refund to the toll cost if they do not reach their destination within specified travel times due to accidents or other unforeseen circumstances. Perceived benefits of TTR include raised public acceptance towards priced MLs, utilization increase of HOV/HOT lanes, overall congestion mitigation, and additional funding for relevant transportation agencies. To gauge travelers’ interests of TTR and to analyse its possible impacts, a stated preference (SP) survey was performed. An exploratory and statistical analysis of the survey responses revealed negative interest towards HOT and TTR option in accordance with common wisdom and previous studies. However, it is found that travelers are less negative about TTR than HOT alone; supporting the idea, that TTR could make HOT facilities more appealing. The impact of travel time reliability and latent variables representing psychological constructs on travelers’ choices in response to this new pricing strategy was also analysed. The results indicate that along with travel time and reliability, the decision maker’s attitudes and the level of comprehension of the concept of HOT and TTR play a significant role in their choice making. While the refund option may be theoretically and analytically feasible, the practical implementation issues cannot be ignored. This study also provides a discussion of the potential implementation considerations that include information provision to connected and non-connected vehicles, distinction between toll-only and refund customers, measurement of actual travel time, refund calculation and processing and safety and human factors issues. As the market availability of Connected and Automated Vehicles (CAVs) is prognosticated by 2020, the potential impact of such technologies on effective demand management, especially on MLs is worth investigating. Simulation analysis was performed to evaluate the system performance of a hypothetical road network at varying market penetration of CAVs. The results indicate that Connected Vehicles (CVs) could potentially encourage and enhance the use of MLs.
ContributorsVadlamani, Sravani (Author) / Lou, Yingyan (Thesis advisor) / Pendyala, Ram (Committee member) / Zhou, Xuesong (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
136279-Thumbnail Image.png
Description
There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students

There are many factors that influence the college decision process, but rural students face a unique set of challenges because of the environment in which they make the decision. This is a qualitative study that combines a review of previous literature on the subject with a survey of twelve students from the graduating class of 2011 in a rural area of Arizona. Results from the interviews found that the rural students consider the perception of importance of a college degree, parental influence, and self-discovery as important factors in the decision making process. In addition, not all non-college-going students felt that college was necessary for a better quality of living, but did express desire for more development opportunities while in high school. The findings resulted in the following recommendations for local educators to help students better navigate the college decision process: teach parents how to have more meaningful conversations, provide step-by-step assistance to students about the college application process, and provide more opportunities for self/educational/career development to students.
ContributorsCrow, Ellyse Diann (Author) / Wang, Lili (Thesis director) / Hollin, Michelle (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / School of Community Resources and Development (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2015-05
136415-Thumbnail Image.png
Description
The purpose of this project was to design a new railroad crossing for pedestrians and bicyclists in mid-block or urban areas. In order to develop a successful design, the needs of the railroad, the end-users, and the city governments were researched and converted into measurable engineering requirements. For the railroad

The purpose of this project was to design a new railroad crossing for pedestrians and bicyclists in mid-block or urban areas. In order to develop a successful design, the needs of the railroad, the end-users, and the city governments were researched and converted into measurable engineering requirements. For the railroad companies, the most important need was a crossing that presents an effective barrier to users while a train is in the area. For bicyclists and pedestrians (the end-users), the most important need was for the crossing to be both reliable and easily accessible. For the city governments, the most important need was a crossing that is inexpensive yet sturdy. The approach to this project was similar to the approach used in many engineering design processes. First is the Introduction, which provides an overview of the issue and presents the full problem statement. Next is the Research of Prior Art, which details the past solutions to railroad crossings as well as the 3 E's of railroad crossing safety. After this, the customer needs are discussed in the Needs to Requirements section and the process of converting these into measurable engineering requirements is shown. Next, various conceptual design options are shown in the Conceptual Design section and a final conceptual design is chosen based on adherence to the stated requirements. This final conceptual design is then taken into the preliminary design phase and refined until it becomes the final preliminary design. After the Final Preliminary Design Description, the Project Conclusions and Recommendations are presented. Due to time and monetary constraints, this project ends after the preliminary design stage. Despite this, the conclusion of this project is that the final design presented here will be successful if additional resources are obtained to move it forward into the detailed design phase. For now, this project has come to a halt due to UP's reluctance to allow any additional railroad crossings in the Phoenix and Tempe, Arizona areas. It is recommended that city officials and bicyclist/pedestrian action groups continue talks with UP until they agree to allow additional crossings to be built that are geared towards non-motorized users.
ContributorsJones, Mitchell Drexel (Author) / Kuby, Michael (Thesis director) / Lou, Yingyan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133958-Thumbnail Image.png
Description
The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years later, on the exact anniversary of the devastating earthquake, Mexico City was once again jolted by a 7.1 magnitude earthquake. Although still significant, the 2017 earthquake collapsed only about a tenth of the buildings collapsed by the 1985 Earthquake, and in turn resulted in a lower death toll. Even though these earthquakes struck in the same seismic region, their effects were vastly different. This thesis completes a comparison between the two earthquakes focusing on the structural impacts including background on Mexico City's unique geology, basic concepts necessary to understand the response of structures to earthquake excitation, and structural failure modes observed in both earthquakes. The thesis will also discuss the earthquake's fundamental differences that led to the discrepancy in structural damage and ultimately in lower death tolls. Of those discussed, is the types of buildings that were targeted and collapsed. In 1985, buildings with 6 or more floors had the highest damage category. Resonance frequencies of these buildings were similar to the resonance frequencies of the subsoil, leading to amplified oscillations, and ultimately in failure. The 2017 earthquake did not have as much distance from the epicenter for the high frequency seismic waves to be absorbed. In contrast, the shorter, faster waves that reached the capital affected smaller buildings, and spared most tall buildings.
ContributorsGonzalez, Diana Laura (Author) / Hjelmstad, Keith (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136945-Thumbnail Image.png
Description
This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often

This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often cited as one of the most important statistics when making budget decisions. Many academic programs are ill-equipped to perform this task, however, as their personnel are not trained as recruiters, but rather as professors and industry professionals; furthermore, the university-level recruitment staff faces the impossible task of advertising every department's recruitment message. The Del E. Webb School of Construction has embarked upon a journey to create industry-based marketing materials to aid them in their recruitment efforts. Construction management (CM) has traditionally been viewed as a technology major relegated to vocational students and those not fit for baccalaureate programs. In recent years that perception has changed, however, as the industry has become increasingly complex and CM programs actively work to recruit students. In an attempt to increase that recruitment, the Del E. Webb School has created marketing materials that are signature to the program featuring the world's most widely-used building material, concrete, to create a keepsake for prospective students. This keepsake comes in the form of concrete replicas of the new ASU Pitchfork logo. These pitchforks are small and designed to be mass produced so that they can be handed out at recruitment events either on campus or in local schools. The Del E. Webb School had previously experimented with flexible rubber molds and flowable mixtures, such that the models could be easily cast and rapidly demolded and reset for casting. There were issues, however, as those pitchforks did not meet desired level of quality and were difficult to reproduce. This thesis thus describes an experimental program examining different casting and demolding regimens in an attempt to find the optimal way to create the pitchforks on a consistent basis. Following this, an operations manual for how to create the pitchforks was created in order to ensure that successive cohorts of construction students can reproduce the pitchforks in preparation for the School's annual recruitment events.
ContributorsErnzen, John Alexander (Author) / Wiezel, Avi (Thesis director) / Rogers, James (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134402-Thumbnail Image.png
Description
The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.
ContributorsLockhart, Laura E. (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134754-Thumbnail Image.png
Description
The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a

The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a curiosity in the design of wood frames for homes and the residential industry as a whole. Since then, I have also had the opportunity to intern for Felten Group, an architecture, engineering, and forensics firm specializing in residential work. A residential roof structure is designed following the American Society of Civil Engineer's Minimum Design Loads for Buildings and Other Structures design code, in addition to the National Design Standards for Wood Construction manual. Although the sub discipline of wooden structural design can often be disregarded as the simplest type of analysis, I believe that it is a key component of an education in structural engineering. Like all aspects of civil engineering, the design of a house is composed of many interconnected systems, which include the balance of structural integrity and cost, functionality and aesthetics, and light and space. For my creative project, I took these ideas into account when designing both the floor plan and roof structure of the house using Revit and RISA, respectively. Well-rounded engineers are not only technically competent, but they also understand the social dimensions of a problem and how all the systems work together. The project focuses on creating a cohesive representation of a structure as a whole and how the individual frames, trusses, and beams interact with one another using RISA, a structural analysis program. With RISA's 3D interface, I have a better understanding of how more complex structures behave, which I have not gained from my 2D perspective in classes. RISA is used to calculate support reactions and the deflections of the trusses, which are checked against the bearing capacities of the supports and deflection design criteria to ensure a safe design. Concepts such as tributary area, truss connections, and the behavior of girder systems are also explored through the process.
Created2016-12
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05