Matching Items (5)
Filtering by

Clear all filters

Description

The debate around genetic engineering has permeated society for decades. A crucial aspect of this debate is the containment of genetically engineered organisms. This project outlines the three types of biocontainment and the conclusions drawn about each in the form of policy briefs. These briefs utilize case studies to sketch

The debate around genetic engineering has permeated society for decades. A crucial aspect of this debate is the containment of genetically engineered organisms. This project outlines the three types of biocontainment and the conclusions drawn about each in the form of policy briefs. These briefs utilize case studies to sketch an overview of the current biocontainment paradigm in the United States. In addition, there is a brief discussing the major conclusions drawn from the case studies, as well as a brief containing useful definitions.

ContributorsDanciu, Mark (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2023-05
Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
165210-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165211-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165212-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05