Matching Items (10)

135088-Thumbnail Image.png

High-Intensity Exercise Preconditioning Prevents Downregulation of eNOS Expression in the Aorta Following Doxorubicin Treatment

Description

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is thus hypothesized to counteract oxidative stress when initiated prior to DOX administration. Adult 8-week old, ovariectomized female Sprague-Dawley rats were divided into 4 groups: sedentary + vehicle (Sed+Veh); Sed+DOX; exercise + veh (Ex+Veh); and Ex+DOX. Rats in the exercise groups were preconditioned with high intensity interval training consisting of 4x4 minute bouts of exercise at 85-95% of VO2peak separated by 2 minutes of active recovery performed 5 days per week. Exercise was implemented one week prior to the first injection and continued throughout the study. Animals received either DOX (4mg/kg) or veh (saline) intraperitoneal injections bi-weekly for a cumulative dose of 12 mg/kg per animal. Five days following the final injection, animals were anesthetized with isoflurane, decapitated and aortas and perivascular adipose tissue (PVAT) were removed for western blot analyses. No significant differences in aortic protein expression were detected for inducible nitric oxide synthase (iNOS) or the upstream activator of endothelial nitric oxide synthase (eNOS), Akt, across groups (p>0.05), whereas eNOS protein expression was significantly downregulated in Sed+DOX (p=0.003). In contrast, eNOS expression was not altered in Ex+DOX treated animals. Protein expression of iNOS in PVAT was upregulated with exercise in the DOX-treated groups (p=0.039). These findings suggest that exercise preconditioning may help mitigate vascular effects of DOX by preventing downregulation of eNOS in the aorta.

Contributors

Agent

Created

Date Created
  • 2016-12

134768-Thumbnail Image.png

Impact of Sleep Restriction on Muscle Recovery Following Eccentric Exercise

Description

This study was designed with the goal of measuring the effects of sleep deprivation on muscle function. Participants in this study consisted of 19 individuals, 11 of which were in

This study was designed with the goal of measuring the effects of sleep deprivation on muscle function. Participants in this study consisted of 19 individuals, 11 of which were in the restricted group (age 251) and 8 were in the control group (age 231). Measurements of muscle function included isometric strength, isokinetic velocity, and muscle soreness. Isometric strength and isokinetic velocity were taken for knee extension using a dynamometer. Muscle soreness was measured via a 100mm likert visual analogue scale for the step-up and step-down movements with the effected leg. Measurements were taken at baseline, and 48 hours after the damaging bout of eccentric exercise following either 8 hours of sleep per night or 3 hours of sleep per night. Results show that there were no statistical differences between groups for either measurements of isometric strength, isokinetic velocity, or muscle soreness. Due to possible confounding factors, future research needs to be conducted in order to get a better understanding of the effects of sleep deprivation on muscle function.

Contributors

Agent

Created

Date Created
  • 2016-12

135723-Thumbnail Image.png

The Relationship of Muscle Thickness and Pennation Angle to Muscle Function by Ultrasound Imaging

Description

This purpose of this study was to develop reliable methods for ultrasound measurements of skeletal muscle architecture, and to identify which specific quadriceps measurements most closely relate to peak isometric

This purpose of this study was to develop reliable methods for ultrasound measurements of skeletal muscle architecture, and to identify which specific quadriceps measurements most closely relate to peak isometric torque of the leg extensors. These data were obtained as part of a larger research study and consist of 9 total subjects (4 males, 5 females; age (30.6 ± 13.6yr). Ultrasound images for muscle thickness and pennation angle were obtained for each subject during two separate testing days (separated by 5-10 days). Images were acquired at various anatomical sites of the quadriceps and each image was analyzed using Image J software. Quadriceps muscles assessed for muscle thickness and pennation angle included the vastus lateralis (VL), and vastus intermedius (VI), while rectus femoris (RF) was assessed only for muscle thickness. Peak isometric torque measurements were obtained at 60 degrees of knee angle for knee extension using an isokinetic dynamometer. Results show that the methods chosen for ultrasound measurement produced reliable inter-day results for muscle thickness and pennation angle. VL muscle thickness and pennation angle obtained at the lateral site corresponding to 39% of leg length was highly related to peak isometric torque for knee extension. The results of this study identify specific measurement sites that are related to muscle function. In addition, these data further validate that ultrasound measurement is reliable to measure muscle thickness and pennation angle in skeletal muscle.

Contributors

Agent

Created

Date Created
  • 2016-05

136196-Thumbnail Image.png

Combined Impact of Aerobic Exercise and Music on Glycemic Control and Anxiety Symptoms in Type 2 Diabetic and Non-Diabetic Men and Women

Description

ABSTRACT
Background: Although aerobic exercise has been shown to improve the glycemic control of individuals with type 2 diabetes, a simple and effective approach to manage post-meal glycemic control remains

ABSTRACT
Background: Although aerobic exercise has been shown to improve the glycemic control of individuals with type 2 diabetes, a simple and effective approach to manage post-meal glycemic control remains less clear.
Purpose: This study examined the effect of 15-minute of post-meal aerobic exercise on the glycemic control and anxiety scores as compared with control trials in participants with and without type 2 diabetes.
Methods: Six adults volunteered to participate in the study (3 adults with type 2 diabetes, age = 44.33 ± 7.71; and 3 adults without type 2 diabetes, age = 31.67 ± 15.76). All participants received aerobic exercise intervention and control treatments. The aerobic exercise treatment was listening to upbeat music and dancing for 15-minutes, whereas the control participants ingested 1 gram of vitamin C 30-minutes post-meal. Glucose levels were measured at baseline, and the 10, and 15-minute mark in both exercise intervention and control conditions 30-minutes post-meal.
Results: There was a significant interaction between treatment and time on the change in glucose levels (P<0.001). There was a significant mean difference in change in glucose levels between exercise intervention and control conditions (P = 0.002). Change in glucose levels in exercise intervention was significantly decreased at 10-minute (-18 ± 4.35 vs. 1.67 ± 4.34, P = 0.009) and 15-minute (-24 ± 4.88 vs. 5.67 ± 4.88, P = 0.001) compared with control condition. Although there were no statistical differences in state anxiety scores between pre- and post-exercise intervention (p=0.42), there was a significant trend in the reduction of state anxiety scores in diabetic participants, as compared with healthy participants, after 15-minute exercise intervention (-8 vs. -1).
Conclusion: Aerobic exercise for 15-minute by dancing to music after a meal is an effective approach to controlling the blood glucose levels in type 2 diabetic and healthy persons.

Contributors

Agent

Created

Date Created
  • 2015-05

134624-Thumbnail Image.png

Doxorubicin Induced Cardiotoxicity and High Intensity Aerobic Exercise

Description

Doxorubicin (DOX) is a cardiotoxic, anthracycline-based, anti-neoplastic agent that causes pathological cardiac remodeling due to altered protein expression associated with cardiotoxicity. DOX cardiotoxicity causes increased Akt phosphorylation, blunted AMPK phosphorylation

Doxorubicin (DOX) is a cardiotoxic, anthracycline-based, anti-neoplastic agent that causes pathological cardiac remodeling due to altered protein expression associated with cardiotoxicity. DOX cardiotoxicity causes increased Akt phosphorylation, blunted AMPK phosphorylation and upregulated mTOR phosphorylation. Akt is activated by cellular stress and damage. AMPK is activated by increases in AMP and ADP concentrations and decreased ATP concentration. mTOR is active in cellular growth and remodeling. These proteins are cellular kinases with cascades that are influenced by one another. Exercise preconditioning may diminish the cardiotoxic effects on these proteins. Female, Ovariectomized Sprague-Dawley rats (N=33) were randomized to: Exercise+DOX (EX+DOX, n=9); Exercise+Vehicle (EX+VEH, n=8); Sedentary+DOX (SED+DOX, n=8); and Sedentary+Vehicle (SED+VEH, n=8) groups. DOX (4mg/kg) or VEH (saline) intraperitoneal injections were administered bi-weekly (cumulative dose of 12mg/kg). VEH animals received body weight matched volumes of saline based on dosing in animals receiving DOX. Exercise (EX) animals underwent high intensity (85-95% VO2 peak) interval training (HIIT) (4x4 min bouts) separated by low intensity (50-60% VO2max) intervals (2 min bouts) 5 days per week. Exercise began 1 week prior to the first injection and was continued throughout the study. Rats were euthanized 5 days after the last injection. Left ventricular tissue was isolated, processed into lysate and used for western blot analyses [2x2 ANOVA; (α=0.05)]. DOX induced significant phosphorylation of Akt and mTOR (p=0.035; p=0.032) only in SED+DOX rats, but unchanged in EX+DOX rats. No significant differences (p=0.374) in AMPK phosphorylation were observed between groups. Exercise Preconditioning prevents some DOX-induced changes in the cardiac mTOR signaling pathway implicated in pathological remodeling.

Contributors

Agent

Created

Date Created
  • 2017-05

131940-Thumbnail Image.png

Physiological Effects of High Intensity Interval Training on Women with Breast Cancer Undergoing Anthracycline-based Chemotherapy

Description

Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer

Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are at an increased risk for cardiovascular disease, functional impairments, and loss of cardiorespiratory fitness. These negative outcomes have implications for early morbidity and mortality. The purpose of this thesis was to test the hypothesis that high-intensity exercise preconditioning (exercise commenced prior to initiating chemotherapy and continued throughout treatment cycles) preserves health-related outcomes in breast cancer patients treated with anthracycline-containing chemotherapy. Here, we present a subset of preliminary data from an ongoing trial (NCT02842658) that is focused on VO2peak and skeletal muscle outcomes from the first 10 participants that have enrolled in the trial. Breast cancer patients (N=10; 50 ± 11 y; 168 ± 4 cm; 92 ± 37 kg; 32.3 ± 12.3 kg/m2) scheduled to receive anthracycline-containing chemotherapy were randomly assigned to one of two interventions: 1) exercise preconditioning, (3 days per week of supervised exercise throughout treatment) or 2) standard of care (attention-control). Pre-testing occurred 1-2 week prior to chemotherapy. The interventions were initiated 1 week prior to chemotherapy and continued throughout anthracycline treatment. Post-testing occurred 3-7 days following the last anthracycline treatment. VO2peak (L/min) was reduced by 16% in the control group (P < 0.05), whereas VO2peak was preserved in the exercise preconditioning group. Trends for greater preservation and/or improvement in the exercise preconditioning group were also observed for lean body mass and peak heart rate. Hand grip strength was not changed in either group (P > 0.05). Both groups demonstrated an increase in ultrasound-derived echogenicity measures of the vastus lateralis (P < 0.05), indicating changes in the composition of the skeletal muscle during treatment. These preliminary data highlight that exercise preconditioning may serve as a strategy to preserve cardiorespiratory fitness and perhaps lean mass during anthracycline treatment of breast cancer. There remains a need for larger, definitive clinical trials to identify strategies to prevent the array of chemotherapy-induced toxicities that are observed in breast cancer patients treated with anthracyclines.

Contributors

Agent

Created

Date Created
  • 2020-05

153961-Thumbnail Image.png

Posture, mobility, and 30-day hospital readmission in older adults with heart failure

Description

Background: Heart failure is the leading cause of hospitalization in older adults and has the highest 30-day readmission rate of all diagnoses. An estimated 30 to 60 percent of older

Background: Heart failure is the leading cause of hospitalization in older adults and has the highest 30-day readmission rate of all diagnoses. An estimated 30 to 60 percent of older adults lose some degree of physical function in the course of an acute hospital stay. Few studies have addressed the role of posture and mobility in contributing to, or improving, physical function in older hospitalized adults. No study to date that we are aware of has addressed this in the older heart failure population.

Purpose: To investigate the predictive value of mobility during a hospital stay and patterns of mobility during the month following discharge on hospital readmission and 30-day changes in functional status in older heart failure patients.

Methods: This was a prospective observational study of 21 older (ages 60+) patients admitted with a primary diagnosis of heart failure. Patients wore two inclinometric accelerometers (rib area and thigh) to record posture and an accelerometer placed at the ankle to record ambulatory activity. Patients wore all sensors continuously during hospitalization and the ankle accelerometer for 30 days after hospital discharge. Function was assessed in all patients the day after hospital discharge and again at 30 days post-discharge.

Results: Five patients (23.8%) were readmitted within the 30 day post-discharge period. None of the hospital or post-discharge mobility measures were associated with readmission after adjustment for covariates. Higher percent lying time in the hospital was associated with slower Timed Up and Go (TUG) time (b = .08, p = .01) and poorer hand grip strength (b = -13.94, p = .02) at 30 days post-discharge. Higher daily stepping activity during the 30 day post-discharge period was marginally associated with improvements in SPPB scores at 30 days (b = <.001, p = .06).

Conclusion: For older heart failure patients, increased time lying while hospitalized is associated with slower walking time and poor hand grip strength 30 days after discharge. Higher daily stepping after discharge may be associated with improvements in physical function at 30 days.

Contributors

Agent

Created

Date Created
  • 2015

157288-Thumbnail Image.png

The Impact of Physical Activity and Sleep Patterns on Bone Turnover Markers in College Students

Description

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.

Contributors

Agent

Created

Date Created
  • 2019

155775-Thumbnail Image.png

Muscle Growth and Strength Development Following a 12-Week Resistance Training Program: a Comparison Between Consuming Soy and Whey Protein Supplements Matched for Leucine Content

Description

Sustainability, as it relates to nutrition, affects all aspects of food from systems-level production to consumption. Viability of local food systems in the southwest of the United States has been

Sustainability, as it relates to nutrition, affects all aspects of food from systems-level production to consumption. Viability of local food systems in the southwest of the United States has been largely understudied. In order to address this gap in the literature, semi-structured interviews were conducted with 20 farmers in Arizona and New Mexico to determine best practices, challenges and barriers to farming. Interviews were recorded, transcribed, and coded for themes. Many trends were consistent with those reported elsewhere in the US, but the importance of water emerged, a unique need not explicitly noted in other regional studies.

Vegetarian diets are typically more sustainable than omnivorous ones due to using less environmental resources in the production of food. An important consideration with plant protein and vegetarian diets, however, is whether this would affect athletic performance. To examine this, 70 male and female endurance athletes were compared for maximal oxygen uptake (VO2 max), peak torque when doing leg extensions, and body composition. Vegetarians had higher VO2 max, but peak torque was not significantly different by diet. Omnivores had higher total body mass, lean body mass, and there was a trend for peak torque to be higher.

To investigate whether plant-protein can comparably support development of lean body mass and strength development in conjunction with strength training, 61 healthy young males and females began a 12-week training and protein supplementation study. While previous training studies have shown no differences for lean body mass or strength development when consuming either soy (plant) or whey (animal) protein supplements in very large amounts (>48 grams), when consuming around 15-20 grams, whey has contributed to greater lean body mass accrual, although strength increases remain similar. The present study matched supplements by leucine content instead of by total protein amount since leucine has been shown to be a key stimulator of muscle protein synthesis and is more concentrated in animal protein. There were no significant differences between the whey or soy group for lean body mass or strength development, as assessed using isokinetic dynamometry doing leg extensions and flexions.

Contributors

Agent

Created

Date Created
  • 2017

156088-Thumbnail Image.png

Effect of fatty acids and insulin on syncytin-1 and 4E-BP1 in skeletal muscle

Description

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.

Contributors

Agent

Created

Date Created
  • 2017