Matching Items (1,059)
Filtering by

Clear all filters

153961-Thumbnail Image.png
Description
Background: Heart failure is the leading cause of hospitalization in older adults and has the highest 30-day readmission rate of all diagnoses. An estimated 30 to 60 percent of older adults lose some degree of physical function in the course of an acute hospital stay. Few studies have addressed the

Background: Heart failure is the leading cause of hospitalization in older adults and has the highest 30-day readmission rate of all diagnoses. An estimated 30 to 60 percent of older adults lose some degree of physical function in the course of an acute hospital stay. Few studies have addressed the role of posture and mobility in contributing to, or improving, physical function in older hospitalized adults. No study to date that we are aware of has addressed this in the older heart failure population.

Purpose: To investigate the predictive value of mobility during a hospital stay and patterns of mobility during the month following discharge on hospital readmission and 30-day changes in functional status in older heart failure patients.

Methods: This was a prospective observational study of 21 older (ages 60+) patients admitted with a primary diagnosis of heart failure. Patients wore two inclinometric accelerometers (rib area and thigh) to record posture and an accelerometer placed at the ankle to record ambulatory activity. Patients wore all sensors continuously during hospitalization and the ankle accelerometer for 30 days after hospital discharge. Function was assessed in all patients the day after hospital discharge and again at 30 days post-discharge.

Results: Five patients (23.8%) were readmitted within the 30 day post-discharge period. None of the hospital or post-discharge mobility measures were associated with readmission after adjustment for covariates. Higher percent lying time in the hospital was associated with slower Timed Up and Go (TUG) time (b = .08, p = .01) and poorer hand grip strength (b = -13.94, p = .02) at 30 days post-discharge. Higher daily stepping activity during the 30 day post-discharge period was marginally associated with improvements in SPPB scores at 30 days (b = <.001, p = .06).

Conclusion: For older heart failure patients, increased time lying while hospitalized is associated with slower walking time and poor hand grip strength 30 days after discharge. Higher daily stepping after discharge may be associated with improvements in physical function at 30 days.
ContributorsFloegel, Theresa A (Author) / Buman, Matthew P (Thesis advisor) / Hooker, Steven (Committee member) / Dickinson, Jared (Committee member) / DerAnanian, Cheryl (Committee member) / McCarthy, Marianne (Committee member) / Arizona State University (Publisher)
Created2015
156088-Thumbnail Image.png
Description
Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.
ContributorsRavichandran, Jayachandran (Author) / Katsanos, Christos (Thesis advisor) / Coletta, Dawn (Committee member) / Dickinson, Jared (Committee member) / Arizona State University (Publisher)
Created2017
156840-Thumbnail Image.png
Description
Individuals fluent in sign language who have at least one deaf parent are considered native signers while those with non-signing, hearing parents are non-native signers. Musculoskeletal pain from repetitive motion is more common from non-natives than natives. The goal of this study was twofold: 1) to examine differences in upper

Individuals fluent in sign language who have at least one deaf parent are considered native signers while those with non-signing, hearing parents are non-native signers. Musculoskeletal pain from repetitive motion is more common from non-natives than natives. The goal of this study was twofold: 1) to examine differences in upper extremity (UE) biomechanical measures between natives and non-natives and 2) upon creating a composite measure of injury-risk unique to signers, to compare differences in scores between natives and non-natives. Non-natives were hypothesized to have less favorable biomechanical measures and composite injury-risk scores compared to natives. Dynamometry was used for measurement of strength, electromyography for ‘micro’ rest breaks and muscle tension, optical motion capture for ballistic signing, non-neutral joint angle and work envelope, a numeric pain rating scale for pain, and the modified Strain Index (SI) as a composite measure of injury-risk. There were no differences in UE strength (all p≥0.22). Natives had more rest (natives 76.38%; non-natives 26.86%; p=0.002) and less muscle tension (natives 11.53%; non-natives 48.60%; p=0.008) for non-dominant upper trapezius across the first minute of the trial. For ballistic signing, no differences were found in resultant linear segment acceleration when producing the sign for ‘again’ (natives 27.59m/s2; non-natives 21.91m/s2; p=0.20). For non-neutral joint angle, natives had more wrist flexion-extension motion when producing the sign for ‘principal’ (natives 54.93°; non-natives 46.23°; p=0.04). Work envelope demonstrated the greatest significance when determining injury-risk. Natives had a marginally greater work envelope along the z-axis (inferior-superior) across the first minute of the trial (natives 35.80cm; non-natives 30.84cm; p=0.051). Natives (30%) presented with a lower pain prevalence than non-natives (40%); however, there was no significant difference in the modified SI scores (natives 4.70 points; non-natives 3.06 points; p=0.144) and no association between presence of pain with the modified SI score (r=0.087; p=0.680). This work offers a comprehensive analysis of all the previously identified UE biomechanics unique to signers and helped to inform a composite measure of injury-risk. Use of the modified SI demonstrates promise, although its lack of association with pain does confirm that injury-risk encompasses other variables in addition to a signer’s biomechanics.
ContributorsRoman, Gretchen Anne (Author) / Swan, Pamela (Thesis advisor) / Vidt, Meghan (Committee member) / Peterson, Daniel (Committee member) / Lockhart, Thurmon (Committee member) / Ofori, Edward (Committee member) / Arizona State University (Publisher)
Created2018
135373-Thumbnail Image.png
Description
This study investigated the effect of a small added load on postural stability in older adults. Sixteen healthy older adults (6 male, 10 female, age=72 ± 3.2y, height=172± 9.3 cm, weight=84± 7.6 kg) performed clinical measures of postural control with different loads placed on the shoulders (0%, 1% and

This study investigated the effect of a small added load on postural stability in older adults. Sixteen healthy older adults (6 male, 10 female, age=72 ± 3.2y, height=172± 9.3 cm, weight=84± 7.6 kg) performed clinical measures of postural control with different loads placed on the shoulders (0%, 1% and 3% bodyweight). The functional reach test, comprising a forward, right and left lateral reach, along with COP data measured through the use of a force plate were the postural control measures utilized in this study. COP data used were COP sway velocity and COP mean sway area, in the form of a 95% confidence ellipse. During the COP trials, visual input (eyes open and eyes closed) and surface conditions (firm and foam) were varied to evaluate the effect of the loads under different conditions. Two trials of each measurement were performed for all tests, and participants were allowed rest intervals as needed. Anticipated results show a decreased reach distance of 8% in the forward direction, and a 7% decrease in the left and right lateral directions under a 1% bodyweight load. For expected results of COP velocity, there will be a 12% increase from baseline COP sway velocity in the 1% bodyweight condition. Anticipated results for COP sway area show a 39% increase in the eyes open firm surface, under a 1% bodyweight load, and a 40% increase under the 3% load. These expected results show a significant effect on postural control with a 1% and 3% bodyweight load placed on the shoulders of older adults. This information may be valuable in combatting the epidemic of falls seen among the elderly population, as part of an exercise program for improving balance and postural stability.
ContributorsScherwinski, Eric (Author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
136196-Thumbnail Image.png
Description
ABSTRACT
Background: Although aerobic exercise has been shown to improve the glycemic control of individuals with type 2 diabetes, a simple and effective approach to manage post-meal glycemic control remains less clear.
Purpose: This study examined the effect of 15-minute of post-meal aerobic exercise on the glycemic control and anxiety scores

ABSTRACT
Background: Although aerobic exercise has been shown to improve the glycemic control of individuals with type 2 diabetes, a simple and effective approach to manage post-meal glycemic control remains less clear.
Purpose: This study examined the effect of 15-minute of post-meal aerobic exercise on the glycemic control and anxiety scores as compared with control trials in participants with and without type 2 diabetes.
Methods: Six adults volunteered to participate in the study (3 adults with type 2 diabetes, age = 44.33 ± 7.71; and 3 adults without type 2 diabetes, age = 31.67 ± 15.76). All participants received aerobic exercise intervention and control treatments. The aerobic exercise treatment was listening to upbeat music and dancing for 15-minutes, whereas the control participants ingested 1 gram of vitamin C 30-minutes post-meal. Glucose levels were measured at baseline, and the 10, and 15-minute mark in both exercise intervention and control conditions 30-minutes post-meal.
Results: There was a significant interaction between treatment and time on the change in glucose levels (P<0.001). There was a significant mean difference in change in glucose levels between exercise intervention and control conditions (P = 0.002). Change in glucose levels in exercise intervention was significantly decreased at 10-minute (-18 ± 4.35 vs. 1.67 ± 4.34, P = 0.009) and 15-minute (-24 ± 4.88 vs. 5.67 ± 4.88, P = 0.001) compared with control condition. Although there were no statistical differences in state anxiety scores between pre- and post-exercise intervention (p=0.42), there was a significant trend in the reduction of state anxiety scores in diabetic participants, as compared with healthy participants, after 15-minute exercise intervention (-8 vs. -1).
Conclusion: Aerobic exercise for 15-minute by dancing to music after a meal is an effective approach to controlling the blood glucose levels in type 2 diabetic and healthy persons.
ContributorsSymons, Nicholas Payne (Author) / Lee, Chong (Thesis director) / Dickinson, Jared (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
132815-Thumbnail Image.png
Description
Introduction: Individuals with rotator cuff tears have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). Leading joint hypothesis suggests there is one leading joint that creates the foundation

Introduction: Individuals with rotator cuff tears have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). Leading joint hypothesis suggests there is one leading joint that creates the foundation for the entire limb motion, and there are other subordinate joints which monitor the passive interaction torque and create a net torque aiding to limb motions required for the task. This experiment seeks to establish a better understanding of joint control strategies during a wide range of arm movements. Based on the leading joint hypothesis, we hypothesize that when a subject has a rotator cuff tear, their performance of planar and three-dimensional motions should be altered not only at the shoulder, which is often the leading joint, but also at other joints on the arm, such as the elbow and wrist. This paper will focus on the effect of normal aging on the control of the joints of the arm.
Methods: There were 4 groups of participants: healthy younger adults (n=14)(21.74 ± 1.97), healthy older adults (n=12)(55-75), older adults (n=4)(55-75) with a partial-thickness rotator cuff tear, and older adults (n=4)(55-75) with a full-thickness rotator cuff tear (RCT). All four groups completed strength testing, horizontal drawing and pointing tasks, and three dimensional (3D) activities of daily living. Kinematic and kinetic variables of the arm were obtained during horizontal and 3D tasks using data from 12 reflective markers placed on the arm, 8 motion capture cameras, and Cortex motion capture software (Motion Analysis Corp., Santa Rosa, CA). Strength testing tasks were measured using a dynamometer. All strength testing and 3D tasks were completed for three trials and horizontal tasks were completed for two trials.
Results: Results of the younger adult participants showed that during the forward portion of seven 3D tasks, there were four phases of different joint control mechanics seen in a majority of the movements. These phases included active rotation of both the shoulder and the elbow joint, active rotation of the shoulder with passive rotation of the elbow, passive rotation of the shoulder with active rotation of the elbow, and passive rotation of both the shoulder and the elbow. Passive rotation during movements was a result of gravitational torque on the different segments of the arm and interaction torque caused as a result of the multi-joint structure of human limbs. The number of tested participants for the minor RCT, and RCT older adults groups is not yet high enough to produce significant results and because of this their results are not reported in this article. Between the older adult control group and the young adult control group in the tasks upward reach to eye height and hair comb there were significant differences found between the groups. The differences were found in shorter overall time and distance between the two groups in the upward eye task.
Discussion: Through the available results, multiple phases were found where one or both of the joints of the arm moved passively which further supports the LJH and extends it to include 3D movements. With available data, it can be concluded that healthy older adults use movement control strategies, such as shortening distance covered, decreasing time percentage in active joint phases, and increasing time percentage in passive joint phases, to account for atrophy along with other age-related declines in performance, such as a decrease in range of motion. This article is a part of a bigger project which aims to better understand how older adults with RCTs compensate for the decreased strength, the decreased range of motion, and the pain that accompany this type of injury. It is anticipated that the results of this experiment will lead to more research toward better understanding how to treat patients with RCTs.
ContributorsFlores, Noah Mateo (Author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133806-Thumbnail Image.png
Description
Introduction: Individuals with rotator cuff tears (RCT) have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). The leading joint hypothesis (LJH) suggests there is one leading joint that

Introduction: Individuals with rotator cuff tears (RCT) have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). The leading joint hypothesis (LJH) suggests there is one leading joint that creates the foundation for the entire limb motion, and there are other subordinate joints that monitor the passive interaction torque (IT) and create a net torque (NT) aiding to limb motions required for the task. This experiment hopes to establish a better understanding of joint control strategies during a wide range of arm movements. Based off of the LJH, we hypothesize that when a subject has a rotator cuff tear, their performance of planar and three- dimensional motions should be altered not only at the shoulder, which is often the leading joint, but also at other joints on the arm such as the elbow and wrist.

Methods: There were 3 groups of participants: healthy younger adults (age 21.74 ± 1.97), healthy older adult controls (age 69.53 ± 6.85), and older adults with a RCT (age 64.33 ± 4.04). All three groups completed strength testing, horizontal drawing and pointing tasks, and three-dimensional (3D) activities of daily living (ADLs). Kinematic and kinetic variables of the arm were obtained during horizontal and 3D tasks using data from 13 reflective markers placed on the arm and trunk, 8 motion capture cameras, and Cortex motion capture software (Motion Analysis Corp., Santa Rosa, CA). During these tasks, electromyography (EMG) electrodes were placed on 12 muscles along the arm that affect shoulder, elbow, and wrist rotation. Strength testing tasks were measured using a dynamometer. All strength testing and 3D tasks were completed for three trials and horizontal tasks were completed for two trials.

Results: Results of the younger adult participants showed that during the forward portion of seven 3D tasks, there were four phases of different joint control mechanics seen in a majority of the movements. These phases included active rotation of both the shoulder and the elbow joint, active rotation of the shoulder with passive rotation of the elbow, passive rotation of the shoulder with active rotation of the elbow, and passive rotation of both the shoulder and the elbow. Passive rotation during movements was a result of gravitational torque (GT) on the different segments of the arm and IT caused as a result the multi-joint structure of human limbs. The number of tested participants for the healthy older adults and RCT older adults groups is not yet high enough to produce significant results and because of this their results are not reported in this article.

Discussion: Through the available results, multiple phases were found where one or both of the joints of the arm moved passively which further supports the LJH and extends it to include 3D movements. This article is a part of a bigger project which hopes to get a better understanding of how older adults adjust to large passive torques acting on the arm during 3D movements and how older adults with RCTs compensate for the decreased strength, the decreased range of motion (ROM), and the pain that accompany these types of tears. Hopefully the results of this experiment lead to more research toward better understanding how to treat patients with RCTs.
ContributorsGarnica, Nicholas (Co-author) / Perrine, Austin (Co-author) / Schalk, Courtney (Co-author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134624-Thumbnail Image.png
Description
Doxorubicin (DOX) is a cardiotoxic, anthracycline-based, anti-neoplastic agent that causes pathological cardiac remodeling due to altered protein expression associated with cardiotoxicity. DOX cardiotoxicity causes increased Akt phosphorylation, blunted AMPK phosphorylation and upregulated mTOR phosphorylation. Akt is activated by cellular stress and damage. AMPK is activated by increases in AMP and

Doxorubicin (DOX) is a cardiotoxic, anthracycline-based, anti-neoplastic agent that causes pathological cardiac remodeling due to altered protein expression associated with cardiotoxicity. DOX cardiotoxicity causes increased Akt phosphorylation, blunted AMPK phosphorylation and upregulated mTOR phosphorylation. Akt is activated by cellular stress and damage. AMPK is activated by increases in AMP and ADP concentrations and decreased ATP concentration. mTOR is active in cellular growth and remodeling. These proteins are cellular kinases with cascades that are influenced by one another. Exercise preconditioning may diminish the cardiotoxic effects on these proteins. Female, Ovariectomized Sprague-Dawley rats (N=33) were randomized to: Exercise+DOX (EX+DOX, n=9); Exercise+Vehicle (EX+VEH, n=8); Sedentary+DOX (SED+DOX, n=8); and Sedentary+Vehicle (SED+VEH, n=8) groups. DOX (4mg/kg) or VEH (saline) intraperitoneal injections were administered bi-weekly (cumulative dose of 12mg/kg). VEH animals received body weight matched volumes of saline based on dosing in animals receiving DOX. Exercise (EX) animals underwent high intensity (85-95% VO2 peak) interval training (HIIT) (4x4 min bouts) separated by low intensity (50-60% VO2max) intervals (2 min bouts) 5 days per week. Exercise began 1 week prior to the first injection and was continued throughout the study. Rats were euthanized 5 days after the last injection. Left ventricular tissue was isolated, processed into lysate and used for western blot analyses [2x2 ANOVA; (α=0.05)]. DOX induced significant phosphorylation of Akt and mTOR (p=0.035; p=0.032) only in SED+DOX rats, but unchanged in EX+DOX rats. No significant differences (p=0.374) in AMPK phosphorylation were observed between groups. Exercise Preconditioning prevents some DOX-induced changes in the cardiac mTOR signaling pathway implicated in pathological remodeling.
ContributorsPanknin, Timothy M (Author) / Angadi, Siddhartha (Thesis director) / Sweazea, Karen (Committee member) / Dickinson, Jared (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05