Matching Items (26)
152054-Thumbnail Image.png
Description
Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for giant planet satellites. In addition, impacts of interplanetary dust particles on the small satellites of the Pluto system can eject into the system significant amounts of secondary intra-satellite dust. This dust is primarily swept up by Pluto and Charon, and could explain the observed albedo features on Pluto's surface. In addition to Pluto, a large fraction of trans-neptunian objects (TNOs) are binary or multiple systems. The mutual orbits of these TNO binaries can range from very wide (periods of several years) to near-contact systems (less than a day period). No single formation mechanism can explain this distribution. However, if the systems generally formed wide, a combination of solar and body tides (commonly called Kozai Cycles-Tidal Friction, KCTF) can cause most systems to tighten sufficiently to explain the observed distributions. This KCTF process can also be used to describe the orbital evolution of a terrestrial-class exoplanet after being captured as a satellite of a habitable-zone giant exoplanet. The resulting exomoon would be both potentially habitable and potenially detectable in the full Kepler data set.
ContributorsPorter, Simon Bernard (Author) / Desch, Steven (Thesis advisor) / Zolotov, Mikhail (Committee member) / Timmes, Francis (Committee member) / Scannapieco, Evan (Committee member) / Robinson, Mark (Committee member) / Arizona State University (Publisher)
Created2013
151756-Thumbnail Image.png
Description
Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to

Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d<63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be ``red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5-10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35<1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.
ContributorsRutkowski, Michael (Author) / Windhorst, Rogier A. (Thesis advisor) / Bowman, Judd (Committee member) / Butler, Nathaniel (Committee member) / Desch, Steven (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152707-Thumbnail Image.png
Description
As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.
ContributorsPagano, Michael (Author) / Young, Patrick (Thesis advisor) / Shim, Sang-Heon (Committee member) / Patience, Jennifer (Committee member) / Desch, Steven (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
Description
Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to

Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to provide important constraints on models for a range of large-scale geophysical phenomena within the crust and mantle.

The Great Basin (GB) in the western U.S. is part of the diffuse North American-Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, yet the current distribution of regional seismic networks poorly samples it. The EarthScope USArray Transportable Array provides unprecedented station density and data quality for the central GB. I use this dataset to develop an earthquake catalog for the region that is complete to M 1.5. The catalog contains small-magnitude seismicity throughout the interior of the GB. The spatial distribution of earthquakes is consistent with recent regional geodetic studies, confirming that the interior of the GB is actively deforming everywhere and all the time. Additionally, improved event detection thresholds reveal that swarms of temporally-clustered repeating earthquakes occur throughout the GB. The swarms are not associated with active volcanism or other swarm triggering mechanisms, and therefore, may represent a common fault behavior.

Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting lithosphere. Previous studies suggest that metastable enstatite within subducting slabs may persist to the base of the mantle transition zone (MTZ) before transforming to high-pressure polymorphs. The metastable persistence of enstatite has been proposed as a potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of the MTZ. I show that natural Al- and Fe-bearing enstatite reacts more readily than previous studies and by multiple transformation mechanisms at conditions as low as 1200°C and 18 GPa. Metastable enstatite is thus unlikely to survive to the base of the MTZ. Additionally, coherent growth of akimotoite and other high-pressure phases along polysynthetic twin boundaries provides a mechanism for the inheritance of crystallographic preferred orientation from previously deformed enstatite-bearing rocks within subducting slabs.
ContributorsLockridge, Jeffrey Steven (Author) / Sharp, Thomas (Thesis advisor) / Arrowsmith, Ramon (Thesis advisor) / Shim, Sang-Heon (Committee member) / Garnero, Edward (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2015
156146-Thumbnail Image.png
Description
Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can

Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can be easily deployed on the uneven surface of heated rocks at the rim of hot springs. By employing the temperature gradient between the hot rock surface and the air, these TEGs can generate power to extend the battery lifetime of the sensor notes and therefore reduce multiple batteries changes where the environment is usually harsh in hot springs. Also, they show great promise for self-powered wireless sensor notes. Traditional thermoelectric material bismuth telluride (Bi2Te3) and advanced MEMS (Microelectromechanical systems) thin film techniques were used for the fabrication. Test results show that when a flexible TEG array with an area of 3.4cm2 was placed on the hot plate surface of 80°C in the air under room temperature, it had an open circuit voltage output of 17.6mV and a short circuit current output of 0.53mA. The generated power was approximately 7mW/m2.

On the other hand, high pressure, temperatures that can reach boiling, and the pH of different hot springs ranging from <2 to >9 make hot spring ecosystem a unique environment that is difficult to study. WSN allows many scientific studies in harsh environments that are not feasible with traditional instrumentation. However, wireless pH sensing for long time in situ data collection is still challenging for two reasons. First, the existing commercial-off-the-shelf pH meters are frequent calibration dependent; second, biofouling causes significant measurement error and drift. In this work, 2-dimentional graphene pH sensors were studied and calibration free graphene pH sensor prototypes were fabricated. Test result shows the resistance of the fabricated device changes linearly with the pH values (in the range of 3-11) in the surrounding liquid environment. Field tests show graphene layer greatly prevented the microbial fouling. Therefore, graphene pH sensors are promising candidates that can be effectively used for wireless pH sensing in exploration of hot spring ecosystems.
ContributorsHan, Ruirui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Yu, Hongbin (Committee member) / Garnero, Edward (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
156778-Thumbnail Image.png
Description
The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination

The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination with modeling provides valuable tools, suitable for hazard mitigation and risk management efforts. Magmatic activities and induced seismicity linked to fluid injection are two natural and anthropogenic processes discussed in this dissertation.

Successful forecasting of the timing, style, and intensity of a volcanic eruption is made possible by improved understanding of the volcano life cycle as well as building quantitative models incorporating the processes that govern rock melting, melt ascending, magma storage, eruption initiation, and interaction between magma and surrounding host rocks at different spatial extent and time scale. One key part of such models is the shallow magma chamber, which is generally directly linked to volcano’s eruptive behaviors. However, its actual shape, size, and temporal evolution are often not entirely known. To address this issue, I use space-based geodetic data with high spatiotemporal resolution to measure surface deformation at Kilauea volcano. The obtained maps of InSAR (Interferometric Synthetic Aperture Radar) deformation time series are exploited with two novel modeling schemes to investigate Kilauea’s shallow magmatic system. Both models can explain the same observation, leading to a new compartment model of magma chamber. Such models significantly advance the understanding of the physical processes associated with Kilauea’s summit plumbing system with potential applications for volcanoes around the world.

The unprecedented increase in the number of earthquakes in the Central and Eastern United States since 2008 is attributed to massive deep subsurface injection of saltwater. The elevated chance of moderate-large damaging earthquakes stemming from increased seismicity rate causes broad societal concerns among industry, regulators, and the public. Thus, quantifying the time-dependent seismic hazard associated with the fluid injection is of great importance. To this end, I investigate the large-scale seismic, hydrogeologic, and injection data in northern Texas for period of 2007-2015 and in northern-central Oklahoma for period of 1995-2017. An effective induced earthquake forecasting model is developed, considering a complex relationship between injection operations and consequent seismicity. I find that the timing and magnitude of regional induced earthquakes are fully controlled by the process of fluid diffusion in a poroelastic medium and thus can be successfully forecasted. The obtained time-dependent seismic hazard model is spatiotemporally heterogeneous and decreasing injection rates does not immediately reduce the probability of an earthquake. The presented framework can be used for operational induced earthquake forecasting. Information about the associated fundamental processes, inducing conditions, and probabilistic seismic hazards has broad benefits to the society.
ContributorsZhai, Guang (Author) / Shirzaei, Manoochehr (Thesis advisor) / Garnero, Edward (Committee member) / Clarke, Amanda (Committee member) / Tyburczy, James (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
156837-Thumbnail Image.png
Description
The movement between tectonic plates is accommodated through brittle (elastic) displacement on the plate boundary faults and ductile permanent deformation on the fault borderland. The elastic displacement along the fault can occur in the form of either large seismic events or aseismic slip, known as fault creep. Fault creep mainly

The movement between tectonic plates is accommodated through brittle (elastic) displacement on the plate boundary faults and ductile permanent deformation on the fault borderland. The elastic displacement along the fault can occur in the form of either large seismic events or aseismic slip, known as fault creep. Fault creep mainly occurs at the deep ductile portion of the crust, where the temperature is high. Nonetheless, aseismic creep can also occur on the shallow brittle portion of the fault segments that are characterized by frictionally weak material, elevated pore fluid pressure, or geometrical complexity. Creeping segments are assumed to safely release the accumulated strain(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992) on the fault and also impede propagation of the seismic rupture. The rate of aseismic slip on creeping faults, however, might not be steady in time and instead consist of successive periods of acceleration and deceleration, known as slow slip events (SSEs). SSEs, which aseismically release the strain energy over a period of days to months, rather than the seconds to minutes characteristic of a typical earthquake, have been interpreted as earthquake precursors and as possible triggering factor for major earthquakes. Therefore, understanding the partitioning of seismic and aseismic fault slip and evolution of creep is fundamental to constraining the fault earthquake potential and improving operational seismic hazard models. Thanks to advances in tectonic geodesy, it is now possible to detect the fault movement in high spatiotemporal resolution and develop kinematic models of the creep evolution on the fault to determine the budget of seismic and aseismic slip.

In this dissertation, I measure the decades-long time evolution of fault-related crustal deformation along the San Andrea Fault in California and the northeast Japan subduction zone using space-borne geodetic techniques, such as Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR). The surface observation of deformation combined with seismic data set allow constraining the time series of creep distribution on the fault surface at seismogenic depth. The obtained time-dependent kinematic models reveal that creep in both study areas evolves through a series of SSEs, each lasting for several months. Using physics-based models informed by laboratory experiments, I show that the transient elevation of pore fluid pressure is the driving mechanism of SSEs. I further investigate the link between SSEs and evolution of seismicity on neighboring locked segments, which has implications for seismic hazard models and also provides insights into the pattern of microstructure on the fault surface. I conclude that while creeping segments act as seismic rupture barriers, SSEs on these zones might promote seismicity on adjacent seismogenic segments, thus change the short-term earthquake forecast.
ContributorsKhoshmanesh, Mostafa (Author) / Shirzaei, Manoochehr (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Garnero, Edward (Committee member) / Tyburczy, James (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2018
156961-Thumbnail Image.png
Description
The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.
ContributorsLorenzo, Alejandro M., Jr (Author) / Desch, Steven (Thesis advisor) / Shim, Dan S.-H. (Committee member) / Line, Michael (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
135035-Thumbnail Image.png
Description
For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns

For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns over two years (2013-2014) were interviewed prior to the start of their internship, after their internship, and after presenting their research at the American Geophysical Union annual meeting. This internship program is of particular interest because many of the interns come into the REU with non-geoscience or geophysics backgrounds (e.g., physics, mathematics, chemistry, engineering). Both a priori and emergent codes are used to convert interview transcripts into quantitative data, which is analyzed alongside demographic information to understand how the REU influences their decisions. Increases in self-efficacy and exposure to multiple facets of geoscience research are expressed as primary factors that help shape their future educational and career goals. Other factors such as networking opportunities and connections during the REU also can play a role in their decision. Overall, REU participants who identified as geosciences majors solidified their decisions to pursue a career in geosciences, while participants who identified as non-geosciences majors were inclined to change majors, pursue geosciences in graduate school, or explore other job opportunities in the geosciences.
ContributorsGossard, Trey Marshall (Author) / Semken, Steven (Thesis director) / Garnero, Edward (Committee member) / Reynolds, Stephen (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153639-Thumbnail Image.png
Description
The Kuiper Belt Object Haumea is one of the most fascinating objects in the solar system. Spectral reflectance observations reveal a surface of almost pure water ice, yet it has a mass of 4.006 × 1021 kg, measured from orbits of its moons, along with an inferred mean radius

The Kuiper Belt Object Haumea is one of the most fascinating objects in the solar system. Spectral reflectance observations reveal a surface of almost pure water ice, yet it has a mass of 4.006 × 1021 kg, measured from orbits of its moons, along with an inferred mean radius of 715 km, and these imply a mean density of around 2600 kg m−3. Thus the surface ice must be a veneer over a rocky core. This model is supported by observations of Haumea's light curve, which shows large photometric variations over an anomalously rapid 3.9154-hour rotational period. Haumea's surface composition is uniform, therefore the light curve must be due to a varying area presented to the observer, implying that Haumea has an oblong, ellipsoidal shape. If Haumea's rotation axis is normal to our line of sight, and Haumea reflects with a lunar-like scattering function, then its axis ratios are p = b/a = 0.80 (in the equatorial cross section) and q = c/a = 0.52 (in the polar cross section). In this work, I assume that Haumea is in hydrostatic equilibrium, and I model it as a two-phase ellipsoid with an ice mantle and a rocky core. I model the core assuming it has a given density in the range between 2700–3300 kg m−3 with axis ratios that are free to vary. The metric which my code uses calculates the angle between the gravity vector and the surface normal, then averages this over both the outer surface and the core-mantle boundary. When this fit angle is minimized, it allows an interpretation of the size and shape of the core, as well as the thickness of the ice mantle. Results of my calculations show that Haumea's most likely core density is 2700–2800 kg m−3, with ice thicknesses anywhere from 12–32 km over the poles and as thin as 4–18 km over the equator.
ContributorsProbst, Luke (Author) / Desch, Steven (Thesis advisor) / Asphaug, Erik (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2015